Zobrazeno 1 - 10
of 20
pro vyhledávání: '"Benjamín Olea"'
Autor:
Manuel Gutiérrez, Benjamín Olea
Publikováno v:
Axioms, Vol 10, Iss 4, p 284 (2021)
Starting from the main definitions, we review the rigging technique for null hypersurfaces theory and most of its main properties. We make some applications to illustrate it. On the one hand, we show how we can use it to show properties of null hyper
Externí odkaz:
https://doaj.org/article/b0603f60cded4fa0af94e3e542a5ad63
Autor:
Benjamín Olea
Publikováno v:
Mediterranean Journal of Mathematics. 20
A well-known application of the Raychaudhuri equation shows that, under geodesic completeness, totally geodesic null hypersurfaces are unique which satisfy that the Ricci curvature is nonnegative in the null direction. The proof of this fact is based
Publikováno v:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas. 117
We show a link between affine differential geometry and null submanifolds in a semi-Riemannian manifold via statistical structures. Once a rigging for a null submanifold is fixed, we can construct a semi-Riemannian metric on it. This metric and the i
Autor:
Benjamín Olea, Francisco J. Palomo
Publikováno v:
The Journal of Geometric Analysis. 33
We say that a Lorentzian metric and a semi-Riemannian metric on the same manifold M are null-projectively related if every null geodesic of the Lorentzian metric is an unparametrized geodesic of the semi-Riemannian one. This definition includes the c
Autor:
Cyriaque Atindogbé, Benjamín Olea
Publikováno v:
RIUMA. Repositorio Institucional de la Universidad de Málaga
instname
instname
We give conditions for a conformal vector field to be tangent to a null hypersurface. We particularize to two important cases: a Killing vector field and a closed and conformal vector field. In the first case, we obtain a result ensuring that a null
Autor:
Manuel Gutiérrez, Benjamín Olea
Publikováno v:
Developments in Lorentzian Geometry ISBN: 9783031053788
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c8f35a90448e921249d98b82d9b2c1dd
https://doi.org/10.1007/978-3-031-05379-5_8
https://doi.org/10.1007/978-3-031-05379-5_8
Autor:
Manuel Gutiérrez, Benjamín Olea
Publikováno v:
Annals of Global Analysis and Geometry. 56:507-518
We establish a new lower bound for the null injectivity radius of a null cone. The idea is to use a function closely related to the null second fundamental form which codifies the directional expansion of the null cone along any null geodesic in it.
Publikováno v:
RIUMA. Repositorio Institucional de la Universidad de Málaga
instname
instname
The aim of this paper is to show how we can induce contact structures, contact metric structures and Sasaki structures on a null hypersurface from a rigging vector field. We give several explicit examples of this construction and some obstructions to
Autor:
Manuel Gutiérrez, Benjamín Olea
Publikováno v:
Journal of Mathematical Analysis and Applications. 508:125906
Publikováno v:
Mediterranean Journal of Mathematics. 16
We extend the rigging technique to null submanifolds of a Lorentzian manifold, which allows us to construct two connections: the induced connection and the rigged connection. We study the relationship between them after changing the rigging and the e