Zobrazeno 1 - 10
of 94
pro vyhledávání: '"Benevieri, Pierluigi"'
In this paper, we study the $T$-periodic solutions of the parameter-dependent $\phi$-Laplacian equation \begin{equation*} (\phi(x'))'=F(\lambda,t,x,x'). \end{equation*} Based on the topological degree theory, we present some atypical bifurcation resu
Externí odkaz:
http://arxiv.org/abs/2406.00325
This paper aims to provide a careful and self-contained introduction to the theory of topological degree in Euclidean spaces. It is intended for people mostly interested in analysis and, in general, a heavy background in algebraic or differential top
Externí odkaz:
http://arxiv.org/abs/2304.06463
We study the persistence of eigenvalues and eigenvectors of perturbed eigenvalue problems in Hilbert spaces. We assume that the unperturbed problem has a nontrivial kernel of odd dimension and we prove a Rabinowitz-type global continuation result. Th
Externí odkaz:
http://arxiv.org/abs/2101.02910
We extend to the infinite dimensional context the link between two completely different topics recently highlighted by the authors: the classical eigenvalue problem for real square matrices and the Brouwer degree for maps between oriented finite dime
Externí odkaz:
http://arxiv.org/abs/2006.15539
We consider the nonlinear eigenvalue problem $Lx + \varepsilon N(x) = \lambda Cx$, $\|x\|=1$, where $\varepsilon,\lambda$ are real parameters, $L, C\colon G \to H$ are bounded linear operators between separable real Hilbert spaces, and $N\colon S \to
Externí odkaz:
http://arxiv.org/abs/1912.07021
Thanks to a connection between two completely different topics, the classical eigenvalue problem in a finite dimensional real vector space and the Brouwer degree for maps between oriented differentiable real manifolds, we were able to solve, at least
Externí odkaz:
http://arxiv.org/abs/1912.03182
By means of a suitable degree theory, we prove persistence of eigenvalues and eigenvectors for set-valued perturbations of a Fredholm linear operator. As a consequence, we prove existence of a bifurcation point for a non-linear inclusion problem in a
Externí odkaz:
http://arxiv.org/abs/1812.01347
We present a global bifurcation result for critical values of $C^1$ maps in Banach spaces. The approach is topological based on homotopy equivalence of pairs of topological spaces. For $C^2$ maps, we prove a particular global bifurcation result, base
Externí odkaz:
http://arxiv.org/abs/1708.01340
Publikováno v:
In Journal of Differential Equations 5 December 2020 269(12):11252-11278
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.