Zobrazeno 1 - 10
of 24
pro vyhledávání: '"Benedikt Loepp"'
Autor:
Benedikt Loepp
Publikováno v:
Frontiers in Big Data, Vol 6 (2023)
For a long time, recommender systems presented their results in the form of simple item lists. In recent years, however, multi-list interfaces have become the de-facto standard in industry, presenting users with numerous collections of recommendation
Externí odkaz:
https://doaj.org/article/5ab7b2ea348d45cd80702febf1505a7a
Publikováno v:
Mensch und Computer
A variety of methods is used nowadays to reduce the complexity of product search on e-commerce platforms, allowing users, for example, to specify exactly the features a product should have, but also, just to follow the recommendations automatically g
Publikováno v:
UMAP (Adjunct Publication)
Current attempts to explain recommendations mostly exploit a single type of data, i.e. usually either ratings provided by users for items in collaborative filtering systems, or item features in content-based systems. While this might be sufficient in
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::49eac7a8f1d40d4b7054512e46ae5fba
https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&origin=inward&scp=85089277702
https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&origin=inward&scp=85089277702
Autor:
Jürgen Ziegler, Benedikt Loepp
Publikováno v:
Handbuch Digitale Wirtschaft ISBN: 9783658172909
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::84bd5b8232071339334e7957baf2b61c
https://doi.org/10.1007/978-3-658-17291-6_52
https://doi.org/10.1007/978-3-658-17291-6_52
Autor:
Jürgen Ziegler, Benedikt Loepp
Publikováno v:
RecSys
Numerous attempts have been made for increasing the interactivity in recommender systems, but the features actually available in today's systems are in most cases limited to rating or re-rating single items. We present a demonstrator that showcases h
Publikováno v:
i-com. 19:169-169
We introduce TagMF, a model-based Collaborative Filtering method that aims at increasing transparency and offering richer interaction possibilities in current Recommender Systems. Model-based Collaborative Filtering is currently the most popular meth
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3faaf6696f8dd4c732502824f8d1ce2c
https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&origin=inward&scp=85047242844
https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&origin=inward&scp=85047242844
Publikováno v:
IJCAI
User studies are increasingly considered important in research on recommender systems. Although participants typically cannot consume any of the recommended items, they are often asked to assess the quality of recommendations and of other aspects rel
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2aa8c78c4b6052ffe425ab43216f4ad7
https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&origin=inward&scp=85074953001
https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&origin=inward&scp=85074953001
Autor:
Jürgen Ziegler, Benedikt Loepp
Publikováno v:
Handbuch Digitale Wirtschaft ISBN: 9783658173456
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::541c321aba34419af5c48887f22c7a0c
https://doi.org/10.1007/978-3-658-17345-6_52-1
https://doi.org/10.1007/978-3-658-17345-6_52-1