Zobrazeno 1 - 10
of 402
pro vyhledávání: '"Bender, Edward"'
Autor:
Larson, Justine, Kazura, Allesandra, Fortuna, Lisa, French, William P., Hodas, Gordon R., Metz, Peter, McGinty, Kaye, Bellonci, Christopher, Lee, Terry, Lohr, W. David, Sharma, Pravesh, Zachik, Al, Varma, Chinedu, Kamarauche, Asuzu, Adade, Otema A., Bender, Edward, Brown, Kurt Anthony, Concepcion, Milangel, Naylor, Michael W., Pandhi, Shashwat, Ugorji, Onyi, Abright, A. Reese, Becker, Timothy, Diamond, John, Hayek, Munya, Keable, Helene, Ripperger-Suhler, Jane, Vasa, Roma, Bukstein, Oscar G., Rockhill, Carol, Walter, Heather J.
Publikováno v:
In Journal of the American Academy of Child & Adolescent Psychiatry April 2023 62(4):367-384
Autor:
Bender, Edward A., Gao, Zhicheng
We study part sizes of supercritical locally restricted sequential structures. This extends previous results about locally restricted integer compositions and part sizes in smooth supercritical compositional structures. Applications are given for run
Externí odkaz:
http://arxiv.org/abs/1605.04353
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Luc, Jessica G.Y., Ouzounian, Maral, Bender, Edward M., Blitz, Arie, Stamp, Nikki L., Varghese, Thomas K., Jr., Cooke, David T., Antonoff, Mara B.
Publikováno v:
In The Journal of Thoracic and Cardiovascular Surgery October 2019 158(4):1127-1136
We define the notion of asymptotically free for locally restricted compositions, which means roughly that large parts can often be replaced by any larger parts. Two well-known examples are Carlitz and alternating compositions. We show that large part
Externí odkaz:
http://arxiv.org/abs/1208.0870
Let $n = b_1 + ... + b_k = b_1' + \cdot + b_k'$ be a pair of compositions of $n$ into $k$ positive parts. We say this pair is {\em irreducible} if there is no positive $j < k$ for which $b_1 + ... b_j = b_1' + ... b_j'$. The probability that a random
Externí odkaz:
http://arxiv.org/abs/math/0404253
The quantity $f(n,r)$, defined as the number of permutations of the set $[n]=\{1,2,... n\}$ whose fixed points sum to $r$, shows a sharp discontinuity in the neighborhood of $r=n$. We explain this discontinuity and study the possible existence of oth
Externí odkaz:
http://arxiv.org/abs/math/0304416