Zobrazeno 1 - 10
of 20
pro vyhledávání: '"Bence Csajbók"'
Publikováno v:
Bulletin of the London Mathematical Society. 55:522-535
Publikováno v:
Linear Algebra and its Applications. 631:111-135
We prove that under the action of GL ( 2 , q 6 ) there are ⌊ ( q 2 + q + 1 ) ( q − 2 ) / 2 ⌋ equivalence classes of maximum scattered subspaces of the form U b = { ( x , b x q + x q 4 ) : x ∈ F q 6 } in F q 6 × F q 6 . This verifies a conjec
Publikováno v:
Journal of Combinatorial Designs. 29:533-551
Let $V$ denote an $r$-dimensional vector space over $\mathbb{F}_{q^n}$, the finite field of $q^n$ elements. Then $V$ is also an $rn$-dimension vector space over $\mathbb{F}_q$. An $\mathbb{F}_q$-subspace $U$ of $V$ is $(h,k)_q$-evasive if it meets th
Let $U$ be a set of polynomials of degree at most $k$ over $\mathbb{F}_q$, the finite field of $q$ elements. Assume that $U$ is an intersecting family, that is, the graphs of any two of the polynomials in $U$ share a common point. Adriaensen proved t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a50b9254bc7ba5fa75e5b7e503d9fdbe
Autor:
Bence Csajbók, Simeon Ball
Publikováno v:
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Recercat. Dipósit de la Recerca de Catalunya
instname
Universitat Politècnica de Catalunya (UPC)
Recercat. Dipósit de la Recerca de Catalunya
instname
We prove that, for $q$ odd, a set of $q+2$ points in the projective plane over the field with $q$ elements has at least $2q-c$ odd secants, where $c$ is a constant and an odd secant is a line incident with an odd number of points of the set.
Rev
Rev
Autor:
Tamás Héger, Bence Csajbók
Publikováno v:
European Journal of Combinatorics. 78:73-89
The main purpose of this paper is to find double blocking sets in PG ( 2 , q ) of size less than 3 q , in particular when q is prime. To this end, we study double blocking sets in PG ( 2 , q ) of size 3 q − 1 admitting at least two ( q − 1 ) -sec
Autor:
Zsuzsa Weiner, Bence Csajbók
In this paper, we generalize the so-called Korchmaros—Mazzocca arcs, that is, point sets of size q + t intersecting each line in 0, 2 or t points in a finite projective plane of order q. For t ≠ 2, this means that each point of the point set is i
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0e6932fae01e62fa4cc204d580ed0f00
http://hdl.handle.net/11589/234051
http://hdl.handle.net/11589/234051
Let $V$ be an $r$-dimensional $\mathbb{F}_{q^n}$-vector space. We call an $\mathbb{F}_q$-subspace $U$ of $V$ $h$-scattered if $U$ meets the $h$-dimensional $\mathbb{F}_{q^n}$-subspaces of $V$ in $\mathbb{F}_q$-subspaces of dimension at most $h$. In 2
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::17456e6144a5f63a00ee49dfbad614ec
http://hdl.handle.net/11588/842640
http://hdl.handle.net/11588/842640
Publikováno v:
Finite Fields and Their Applications. 54:133-150
In [2] and [18] are presented the first two families of maximum scattered F q -linear sets of the projective line PG ( 1 , q n ) . More recently in [22] and in [5] , new examples of maximum scattered F q -subspaces of V ( 2 , q n ) have been construc
Autor:
Bence Csajbók, Simeon Ball
Publikováno v:
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Recercat. Dipósit de la Recerca de Catalunya
instname
Universitat Politècnica de Catalunya (UPC)
Recercat. Dipósit de la Recerca de Catalunya
instname
Segre's lemma of tangents dates back to the 1950's when he used it in the proof of his “arc is a conic” theorem. Since then it has been used as a tool to prove results about various objects including internal nuclei, Kakeya sets, sets with few od