Zobrazeno 1 - 10
of 25
pro vyhledávání: '"Benassi, Costanza"'
The partition function of the Symmetric Matrix Ensemble is identified with the $\tau-$function of a particular solution of the Pfaff Lattice. We show that in the case of even power interactions, in the thermodynamic limit, the $\tau-$function corresp
Externí odkaz:
http://arxiv.org/abs/2101.10232
Autor:
Benassi, Costanza
This thesis focuses on some results about quantum and classical lattice spin systems. We study a wide class of two-dimensional quantum models which enjoy a U(1) symmetry. Using the so called complex rotation method we show that the decay of the relev
Externí odkaz:
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.759669
Autor:
Benassi, Costanza, Moro, Antonio
Publikováno v:
Phys. Rev. E 101, 052118 (2020)
We show that Hermitian matrix models support the occurrence of a new type of phase transition characterised by dispersive regularisation of the order parameter near the critical point. Using the identification of the partition function with a solutio
Externí odkaz:
http://arxiv.org/abs/1903.11473
Autor:
Benassi, Costanza, Ueltschi, Daniel
Publikováno v:
Commun. Math. Phys. 374, 525-547 (2020)
We introduce a family of loop soup models on the hypercubic lattice. The models involve links on the edges, and random pairings of the link endpoints on the sites. We conjecture that loop correlations of distant points are given by Poisson-Dirichlet
Externí odkaz:
http://arxiv.org/abs/1807.06564
Publikováno v:
Ann. Henri Poincar\'e 18, 2831-2847 (2017)
We study a large class of models of two-dimensional quantum lattice systems with continuous symmetries, and we prove a general McBryan-Spencer-Koma-Tasaki theorem concerning algebraic decay of correlations. We present applications of our main result
Externí odkaz:
http://arxiv.org/abs/1612.02478
Publikováno v:
Advances in Quantum Mechanics, A. Michelangeli, G. Dell'Antonio (eds.), Springer INdAM Series 18, pp. 15-31 (2017)
We review correlation inequalities of truncated functions for the classical and quantum XY models. A consequence is that the critical temperature of the XY model is necessarily smaller than that of the Ising model, in both the classical and quantum c
Externí odkaz:
http://arxiv.org/abs/1611.06019
Publikováno v:
J. Stat. Phys. 164, 1157-1166 (2016)
We show the positivity or negativity of truncated correlation functions in the quantum XY model with spin 1/2 (at any temperature) and spin 1 (in the ground state). These Griffiths-Ginibre inequalities of the second kind generalise an earlier result
Externí odkaz:
http://arxiv.org/abs/1510.03215
Autor:
Benassi, Costanza1 (AUTHOR), Ueltschi, Daniel2 (AUTHOR) daniel@ueltschi.org
Publikováno v:
Communications in Mathematical Physics. Mar2020, Vol. 374 Issue 2, p525-547. 23p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Benassi, Costanza1 c.benassi@warwick.ac.uk, Lees, Benjamin1 b.lees@warwick.ac.uk, Ueltschi, Daniel1 daniel@ueltschi.org
Publikováno v:
Journal of Statistical Physics. Sep2016, Vol. 164 Issue 5, p1157-1166. 10p.