Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Benali, Aharrouch"'
Publikováno v:
Boletim da Sociedade Paranaense de Matemática, Vol 39, Iss 6 (2020)
Our goal in this study is to prove the existence of solutions for the following nonlinear anisotropic degenerate elliptic problem: - \partial_{x_i} a_i(x,u,\nabla u)+ \sum_{i=1}^NH_i(x,u,\nabla u)= f- \partial_{x_i} g_i \quad \mbox{in} \ \ \Omega, wh
Externí odkaz:
https://doaj.org/article/29b0b73798d646e38190ba0a8bc6da75
Autor:
Benali, Aharrouch1 bnaliaharrouch@gmail.com, Jaouad, Bennouna2 jbennouna@hotmail.com
Publikováno v:
Nonlinear Studies. 2021, Vol. 28 Issue 1, p237-252. 16p.
Autor:
BENALI, AHARROUCH1 bnaliaharrouch@gmail.com, JAOUAD, BENNOUNA1 jbennouna@hotmail.com
Publikováno v:
Electronic Journal of Differential Equations. 2020, Issue 104-112, p1-15. 15p.
Publikováno v:
Acta Mathematica Vietnamica. 46:701-718
We study a class of nonlinear elliptic problems with Dirichlet conditions in the framework of the Sobolev anisotropic spaces with variable exponent, involving an anisotropic operator on an unbounded domain ${\varOmega }\subset \mathbb {R}^{N} (N \geq
Publikováno v:
Boletim da Sociedade Paranaense de Matemática. 39:53-66
Our goal in this study is to prove the existence of solutions for the following nonlinear anisotropic degenerate elliptic problem:- \partial_{x_i} a_i(x,u,\nabla u)+ \sum_{i=1}^NH_i(x,u,\nabla u)= f- \partial_{x_i} g_i \quad \mbox{in} \ \ \Omega,wher
Publikováno v:
Afrika Matematika. 30:755-776
We consider the degenerate nonlinear elliptic equation (E) : $${\mathcal {A}}(u)= g-{\text {div}}(f)$$ , where $${\mathcal {A}}(u)=-{\text {div}}(a(x,u,\nabla u))$$ is a Leray-Lions operator defined on $$W_0^{1,p(\cdot )}(\Omega )$$ allowed to be non
Autor:
Benali Aharrouch, Jaouad Bennouna
Publikováno v:
Applicationes Mathematicae. 46:175-189
Autor:
Benali, Aharrouch, Jaouad, Bennouna
Publikováno v:
Journal of Elliptic & Parabolic Equations; Dec2021, Vol. 7 Issue 2, p961-975, 15p