Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Benac, María José"'
Let ${\mathbf d} =(d_j)_{j\in\mathbb{I}_m}\in \mathbb{N}^m$ be a decreasing finite sequence of positive integers, and let $\alpha=(\alpha_i)_{i\in\mathbb{I}_n}$ be a finite and non-increasing sequence of positive weights. Given a family $\Phi^0=(\mat
Externí odkaz:
http://arxiv.org/abs/2212.12004
Publikováno v:
In Applied and Computational Harmonic Analysis January 2023 62:331-364
Publikováno v:
Adv Comput Math (2020) 46:22
Let $\mathbf d=(d_j)_{j\in\mathbb I_m}\in\mathbb N^m$ be a finite sequence (of dimensions) and $\alpha=(\alpha_i)_{i\in\mathbb I_n}$ be a sequence of positive numbers (of weights), where $\mathbb I_k=\{1,\ldots,k\}$ for $k\in\mathbb N$. We introduce
Externí odkaz:
http://arxiv.org/abs/1705.03376
For a given finitely generated shift invariant (FSI) subspace $\cW\subset L^2(\R^k)$ we obtain a simple criterion for the existence of shift generated (SG) Bessel sequences $E(\cF)$ induced by finite sequences of vectors $\cF\in \cW^n$ that have a pr
Externí odkaz:
http://arxiv.org/abs/1512.07122
We introduce an extension of the convex potentials for finite frames (e.g. the frame potential defined by Benedetto and Fickus) in the framework of Bessel sequences of integer translates of finite sequences in $L^2(\R^k)$. We show that under a natura
Externí odkaz:
http://arxiv.org/abs/1508.01739
In this paper we study some aspects of oblique duality between finite sequences of vectors $\cF$ and $\cG$ lying in finite dimensional subspaces $\cW$ and $\cV$, respectively. We compute the possible eigenvalue lists of the frame operators of oblique
Externí odkaz:
http://arxiv.org/abs/1410.2809
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.