Zobrazeno 1 - 10
of 112
pro vyhledávání: '"Ben. Hutchinson"'
This book investigates the crucial question of ‘restitution'in the work of W. G. Sebald. Written by leading scholars from a range of disciplines, with a foreword by his English translator Anthea Bell, the essays collected in this volume place Sebal
Autor:
Ben Hutchinson
Die vorliegende Studie widmet sich einer Analyse des Sebald'schen Prosastils unter Rekonstruktion des literarischen Produktionsprozesses. Erstmals in einer Monografie wird seine Handbibliothek im Deutschen Literaturarchiv Marbach erschlossen, um die
Autor:
Ben Hutchinson
Publikováno v:
Comparative Literature. 75:111-126
This article revisits the emergence of “comparative” and “world” literature within the early nineteenth century, arguing that we can only understand the full normative force of the two terms if we read them rhetorically. In order to do this,
Publikováno v:
Endocrine Abstracts.
Autor:
Ben Hutchinson
The idea of ‘literature we can live by’ crystallizes the paradox of art: defined by its distance from life, it requires, at the same time, proximity to life. We turn to art because it offers a protected space of disinterested play – yet we are
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::75f119519d85e87f281c300709a4639c
Publikováno v:
Safety Science. 151:105738
Publikováno v:
FAccT
Conventional algorithmic fairness is West-centric, as seen in its sub-groups, values, and methods. In this paper, we de-center algorithmic fairness and analyse AI power in India. Based on 36 qualitative interviews and a discourse analysis of algorith
Autor:
Lie He, Sebastian U. Stich, Mariana Raykova, Phillip B. Gibbons, Mehryar Mohri, David Evans, Badih Ghazi, Felix X. Yu, Sen Zhao, Jianyu Wang, Zheng Xu, Weikang Song, Prateek Mittal, Ramesh Raskar, Zachary Garrett, Farinaz Koushanfar, H. Brendan McMahan, Ayfer Ozgur, Mikhail Khodak, Rafael G. L. D'Oliveira, Jakub Konecní, Aurélien Bellet, Arjun Nitin Bhagoji, Hubert Eichner, Han Yu, Adrià Gascón, Ananda Theertha Suresh, Sanmi Koyejo, Praneeth Vepakomma, Josh Gardner, Chaoyang He, Florian Tramèr, Tancrède Lepoint, Salim El Rouayheb, Peter Kairouz, Li Xiong, Kallista Bonawitz, Rasmus Pagh, Tara Javidi, Mehdi Bennis, Dawn Song, Martin Jaggi, Zhouyuan Huo, Hang Qi, Gauri Joshi, Qiang Yang, Richard Nock, Yang Liu, Brendan Avent, Justin Hsu, Rachel Cummings, Graham Cormode, Marco Gruteser, Aleksandra Korolova, Ziteng Sun, Zaid Harchaoui, Ben Hutchinson, Zachary Charles, Daniel Ramage
Publikováno v:
Foundations and Trends in Machine Learning
Foundations and Trends in Machine Learning, 2021, 14 (1-2), pp.1-210
Foundations and Trends in Machine Learning, Now Publishers, 2021, 14 (1-2), pp.1-210
Foundations and Trends in Machine Learning, 2021, 14 (1-2), pp.1-210
Foundations and Trends in Machine Learning, Now Publishers, 2021, 14 (1-2), pp.1-210
Federated learning (FL) is a machine learning setting where many clients (e.g. mobile devices or whole organizations) collaboratively train a model under the orchestration of a central server (e.g. service provider), while keeping the training data d
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0b1ccc10027ba1ce68ce0210510e8bdc
https://inria.hal.science/hal-02406503v2/document
https://inria.hal.science/hal-02406503v2/document