Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Belviranli, Mehmet Esat"'
Many state-of-the-art Deep Neural Networks (DNNs) have substantial memory requirements. Limited device memory becomes a bottleneck when training those models. We propose ParDNN, an automatic, generic, and non-intrusive partitioning strategy for DNNs
Externí odkaz:
http://arxiv.org/abs/2008.08636
Publikováno v:
In Parallel Computing July 2021 104-105
Autor:
Belviranli, Mehmet Esat
Publikováno v:
Belviranli, Mehmet Esat. (2016). Efficient Execution of Scientific Applications on Heterogeneous Architectures. UC Riverside: Computer Science. Retrieved from: http://www.escholarship.org/uc/item/8kn3j3pd
Today's heterogeneous architectures bring together multiple general purpose CPUs, domain specific GPUs and FPGAs to provide dramatic speedup for many applications. However, the challenge lies in utilizing these heterogeneous processors to optimize ov
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______325::98118128ed8a4c90c7bc4cfb8c228f2d
http://www.escholarship.org/uc/item/8kn3j3pd
http://www.escholarship.org/uc/item/8kn3j3pd
Autor:
Belviranli, Mehmet Esat
Bilgi görselleme çeşitli çalışma alanlarından elde edilen verilerin anlaşılması ve analizi açısndan oldukça önemlidir. Çizge yerleşimi ise bilgi görsellemede önemli bir problemdir ve çizge tabanlı bilgilerin görsellenmesinde öne
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::e8646dfab4c2848a0d729f99d1afdbac
https://hdl.handle.net/11693/14937
https://hdl.handle.net/11693/14937