Zobrazeno 1 - 10
of 353
pro vyhledávání: '"Beltran, Carlos"'
We construct measure-preserving mappings from the $d$-dimensional unit cube to the $d$-dimensional unit ball and the compact rank one symmetric spaces, namely the $d$-dimensional sphere, the real, complex, and quaternionic projective spaces, and the
Externí odkaz:
http://arxiv.org/abs/2303.00405
In this paper, we get the sharpest known to date lower bounds for the minimal Green energy of the compact harmonic manifolds of any dimension.
Comment: 14 pages, 3 figures
Comment: 14 pages, 3 figures
Externí odkaz:
http://arxiv.org/abs/2212.12526
Autor:
Álvarez-Vizoso, Javier, Beltrán, Carlos, Cuevas, Diego, Santamarıa, Ignacio, Tucek, Vit, Peters, Gunnar
We consider the chordal product determinant, a measure of the distance between two subspaces of the same dimension. In information theory, collections of elements in the complex Grassmannian are searched with the property that their pairwise chordal
Externí odkaz:
http://arxiv.org/abs/2210.02125
In this paper, we propose a new structured Grassmannian constellation for noncoherent communications over single-input multiple-output (SIMO) Rayleigh block-fading channels. The constellation, which we call Grass-Lattice, is based on a measure preser
Externí odkaz:
http://arxiv.org/abs/2209.04172
Autor:
Álvarez-Vizoso, Javier, Cuevas, Diego, Beltrán, Carlos, Santamaria, Ignacio, Tucek, Vit, Peters, Gunnar
We consider the design of multiuser constellations for a multiple access channel (MAC) with K users, with M antennas each, that transmit simultaneously to a receiver equipped with N antennas through a Rayleigh block-fading channel, when no channel st
Externí odkaz:
http://arxiv.org/abs/2209.00901
Autor:
Beltrán, Carlos E., Zapata, José A.
Publikováno v:
Gen Relativ Gravit 55, 77 (2023)
We present a simplicial model for gravity written in terms of a discretized Lorentz connection and a discretized tetrad field. The continuum limit of its action is Holst's action for general relativity. With the intention of using it to construct spi
Externí odkaz:
http://arxiv.org/abs/2208.13808
We present a generalization of a family of points on $\mathbb{S}^2$, the Diamond ensemble, containing collections of $N$ points on $\mathbb{S}^2$ with very small logarithmic energy for all $N\in\mathbb{N}$. We extend this construction to the real pro
Externí odkaz:
http://arxiv.org/abs/2206.08086
Autor:
Beltrán, Carlos, Lizarte, Fátima
We show an alternative proof of the sharpest known lower bound for the logarithmic energy on the unit sphere $\mathbb{S}^2$. We then generalize this proof to get new lower bounds for the Green energy on the unit $n$-sphere $\mathbb{S}^n$.
Commen
Commen
Externí odkaz:
http://arxiv.org/abs/2205.02755
In this note we compute the logarithmic energy of points in the unit interval $[-1,1]$ chosen from different Gegenbauer Determinantal Point Processes. We check that all the different families of Gegenbauer polynomials yield the same asymptotic result
Externí odkaz:
http://arxiv.org/abs/2110.05918