Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Bellin, Etienne"'
In the classical model of random recursive trees, trees are recursively built by attaching new vertices to old ones. What happens if vertices are allowed to freeze, in the sense that new vertices cannot be attached to already frozen ones? We are inte
Externí odkaz:
http://arxiv.org/abs/2308.00493
We investigate scaling limits of trees built by uniform attachment with freezing, which is a variant of the classical model of random recursive trees introduced in a companion paper. Here vertices are allowed to freeze, and arriving vertices cannot b
Externí odkaz:
http://arxiv.org/abs/2308.00484
Autor:
Bellin, Etienne
In this article we study decreasing and increasing factorisations of the cycle, which are decompositions of the cycle $(1~2\dots n)$ into a product of $n-1$ transpositions satisfying monotonicity conditions. We explicit a bijection between such facto
Externí odkaz:
http://arxiv.org/abs/2204.09357
Autor:
Bellin, Etienne
We are interested in the independence number of large random simply generated trees and related parameters, such as their matching number or the kernel dimension of their adjacency matrix. We express these quantities using a canonical tricolouration,
Externí odkaz:
http://arxiv.org/abs/2201.00391
Autor:
Bellin, Etienne
In this paper we study the asymptotic behavior of a random uniform parking function $\pi_n$ of size $n$. We show that the first $k_n$ places $\pi_n(1),\dots,\pi_n(k_n)$ of $\pi_n$ are asymptotically i.i.d. and uniform on $\{1,2,\dots,n\}$, for the to
Externí odkaz:
http://arxiv.org/abs/2108.08661
Autor:
Bellin, Etienne
We are interested in random uniform minimal factorizations of the $n$-cycle which are factorizations of $(1~2\dots n)$ into a product of $n-1$ transpositions. Our main result is an explicit formula for the joint probability that 1 and 2 appear a give
Externí odkaz:
http://arxiv.org/abs/2012.06358
Autor:
Bellin, Etienne
Publikováno v:
In Discrete Mathematics March 2022 345(3)
Autor:
Bellin, Etienne
Publikováno v:
Journal of Applied Probability. :1-18
In this paper we study the asymptotic behavior of a random uniform parking function $\pi_n$ of size $n$. We show that the first $k_n$ places $\pi_n(1),\dots,\pi_n(k_n)$ of $\pi_n$ are asymptotically i.i.d. and uniform on $\{1,2,\dots,n\}$, for the to
Autor:
Bellin, Etienne
On observe successivement la valeur de n variables aléatoires i.i.d de loi uniforme sur [0,1]. A chaque observation il faut prendre la décision de s’arrêter ou de continuer et ainsi de passer à l’observation suivante. L’objectif est de mini
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::44079983bb4271393758c52342b149ee
https://hal.science/hal-01815749v2/document
https://hal.science/hal-01815749v2/document