Zobrazeno 1 - 10
of 1 577
pro vyhledávání: '"Belavin, P. A."'
Autor:
Abedin, Raschid
We study solutions to a generalized version of the classical Yang-Baxter equation (CYBE) with values in a central simple Lie algebra over a field of characteristic 0 from an algebro-geometric perspective. In particular, we describe such solutions usi
Externí odkaz:
http://arxiv.org/abs/2107.10722
Autor:
Negron, Cris
For a simple Lie algebra L of type A, D, E we show that any Belavin-Drinfeld triple on the Dynkin diagram of L produces a collection of Drinfeld twists for Lusztig's small quantum group u_q(L). These twists give rise to new finite-dimensional factori
Externí odkaz:
http://arxiv.org/abs/1701.00283
Publikováno v:
Nuclear Physics B 920 (2017) 419-441
The periodic $Z_n$-Belavin model on a lattice with an arbitrary number of sites $N$ is studied via the off-diagonal Bethe Ansatz method (ODBA). The eigenvalues of the corresponding transfer matrix are given in terms of an unified inhomogeneous $T-Q$
Externí odkaz:
http://arxiv.org/abs/1609.00953
Autor:
Pianzola, Arturo, Stolin, Alexander
We relate the Belavin--Drinfeld cohomologies (twisted and untwisted) that have been introduced in the literature to study certain families of quantum groups and Lie bialgebras over a non algebraically closed field $\mathbb K$ of characteristic 0 to t
Externí odkaz:
http://arxiv.org/abs/1605.09708
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Eisner, Idan
Using the notion of compatibility between Poisson brackets and cluster structures in the coordinate rings of simple Lie groups, Gekhtman Shapiro and Vainshtein conjectured a correspondence between the two. Poisson Lie groups are classified by the Bel
Externí odkaz:
http://arxiv.org/abs/1511.08234
In this paper we continue to study Belavin-Drinfeld cohomology introduced in arXiv:1303.4046 [math.QA] and related to the classification of quantum groups whose quasi-classical limit is a given simple complex Lie algebra. Here we compute Belavin-Drin
Externí odkaz:
http://arxiv.org/abs/1502.00403
Publikováno v:
Theoret. and Math. Phys. 184:1 (2015) 924-939
The quantum elliptic $R$-matrices of Baxter-Belavin type satisfy the associative Yang-Baxter equation in ${\rm Mat}(N,\mathbb C)^{\otimes 3}$. The latter can be considered as noncommutative analogue of the Fay identity for the scalar Kronecker functi
Externí odkaz:
http://arxiv.org/abs/1501.07351
Autor:
Eisner, Idan
Using the notion of compatibility between Poisson brackets and cluster structures in the coordinate rings of simple Lie groups, Gekhtman Shapiro and Vainshtein conjectured a correspondence between the two. Poisson Lie groups are classified by the Bel
Externí odkaz:
http://arxiv.org/abs/1412.5352
In the present article we discuss the classification of quantum groups whose quasi-classical limit is a given simple complex Lie algebra $\mathfrak{g}$. This problem reduces to the classification of all Lie bialgebra structures on $\mathfrak{g}(\math
Externí odkaz:
http://arxiv.org/abs/1303.4046