Zobrazeno 1 - 10
of 33
pro vyhledávání: '"Beland, Laurent K"'
Amorphous solids form an enormous and underutilized class of materials. In order to drive the discovery of new useful amorphous materials further we need to achieve a closer convergence between computational and experimental methods. In this review,
Externí odkaz:
http://arxiv.org/abs/2410.05035
Autor:
Saidi, Peyman, Pirgazi, Hadi, Sanjari, Mehdi, Tamimi, Saeed, Mohammadi, Mohsen, Beland, Laurent K., Daymond, Mark R., Tamblyn, Isaac
Efficient and precise prediction of plasticity by data-driven models relies on appropriate data preparation and a well-designed model. Here we introduce an unsupervised machine learning-based data preparation method to maximize the trainability of cr
Externí odkaz:
http://arxiv.org/abs/2106.12730
Imaging nanoscale features using transmission electron microscopy is key to predicting and assessing the mechanical behavior of structural materials in nuclear reactors. Analyzing these micrographs is often a tedious and labour intensive manual proce
Externí odkaz:
http://arxiv.org/abs/1912.04252
Autor:
Ni, Yezhou, Topham, Robert, Skippon, Travis, Zhang, Jun-Tian, Hanlon, Sean, Long, Fei, Anghel, Catalina, Torres, Edmanuel, Daymond, Mark R., Béland, Laurent K.
Publikováno v:
In Engineering Applications of Artificial Intelligence January 2023 117 Part B
Autor:
Kamath, Aditya, Tamm, Artur, Long, Fei, Griffiths, Malcolm, Daymond, Mark R., Béland, Laurent K.
Publikováno v:
In Materials Today Communications June 2022 31
Autor:
Saidi, Peyman, Pirgazi, Hadi, Sanjari, Mehdi, Tamimi, Saeed, Mohammadi, Mohsen, Béland, Laurent K., Daymond, Mark R., Tamblyn, Isaac
Publikováno v:
In Computer Methods in Applied Mechanics and Engineering 1 February 2022 389
Autor:
Long, Fei, Luo, Yu, Badr, Nima N., Shiman, Oksana, Topping, Matthew, Persaud, Suraj Y., Yao, Zhongwen, Béland, Laurent K., Daymond, Mark R.
Publikováno v:
In Acta Materialia December 2021 221
We present a comparison of the kinetic Activation-Relaxation Technique (k-ART) and the Self-Evolving Atomistic Kinetic Monte Carlo (SEAKMC), two off-lattice, on-the-fly kinetic Monte Carlo (KMC) techniques that were recently used to solve several mat
Externí odkaz:
http://arxiv.org/abs/1409.1253
Publikováno v:
In Current Opinion in Solid State & Materials Science June 2018 22(3):65-74
Publikováno v:
In Acta Materialia 15 August 2016 115:364-371