Zobrazeno 1 - 10
of 317
pro vyhledávání: '"Bektaş Mehmet"'
Publikováno v:
Applied Mathematics and Nonlinear Sciences, Vol 5, Iss 1, Pp 515-520 (2020)
In this study we define the notion of (k,m)-type slant helices in Minkowski 4-space and express some characterizations for partially and pseudo null curves in 𝔼14{\rm{\mathbb E}}_1^4 .
Externí odkaz:
https://doaj.org/article/9236307a3327449dacf7843cc7482f78
Publikováno v:
Acta Universitatis Sapientiae: Mathematica, Vol 10, Iss 2, Pp 395-401 (2018)
In the present work, we define new type slant helices called (k,m)-type and we conclude that there are no (1,k) type (1 ≤ k ≤ 4) slant helices. Also we obtain conditions for different type slant helices.
Externí odkaz:
https://doaj.org/article/52b9b7543d83451eaced6764f9b57c14
Publikováno v:
Open Physics, Vol 14, Iss 1, Pp 360-363 (2016)
In this paper, we investigate the parametric representation for a family of surfaces through a given geodesic curve G3. We provide necessary and sufficient conditions for this curve to be an isogeodesic curve on the parametric surfaces using Frenet f
Externí odkaz:
https://doaj.org/article/673cea3ecc684e52ac9f16b7865753af
Autor:
Hayalioğlu, Mehmet Sedat1 hsedat@dicle.edu.tr, BEKTAŞ, Mehmet Ali2 bektas1026@gmail.com
Publikováno v:
Firat University Journal of Engineering Science. 2024, Vol. 36 Issue 1, p311-339. 29p.
Publikováno v:
Turkish Journal of Gastroenterology; Dec2024, Vol. 35 Issue 12, p945-953, 9p
Autor:
BEKTAŞ, Mehmet
Publikováno v:
Afyon Kocatepe University Journal of Science & Engineering / Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi; Oct2024, Vol. 24 Issue 5, p1036-1045, 9p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
BEKTAŞ, Mehmet Halil Mustafa
Publikováno v:
Uluslararası İlişkiler / International Relations, 2019 Jan 01. 16(61), 39-54.
Externí odkaz:
https://www.jstor.org/stable/26621215
In this paper, we study inextensible flows of partially null and pseudo null curves in E_1^4. We give neccessary and sufficent conditions for inextensible flows of partially null and pseudo null curves in E_1^4
Externí odkaz:
http://arxiv.org/abs/1303.2956
Special curves and their characterizations are one of the main area of mathematicians and physicians. As a special curve we will mainly focus on Mannheim curve which has the following relation: k1={\beta}(k1^2+k2^) where k1 and k2 are curvature and t
Externí odkaz:
http://arxiv.org/abs/1111.0419