Zobrazeno 1 - 2
of 2
pro vyhledávání: '"Bekinschtein, Tristán Andrés"'
Autor:
Phillips, Holly N., Blenkmann, Alejandro Omar, Hughes, Laura E., Kochen, Sara Silvia, Bekinschtein, Tristán Andrés, Cambridge Centre for Ageing and Neuroscience, Rowe, James B.
Publikováno v:
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
We propose that sensory inputs are processed in terms of optimised predictions and prediction error signals within hierarchical neurocognitive models. The combination of non-invasive brain imaging and generative network models has provided support fo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::af95d961aa2e73e2cbd8c4f71ac2efb0
https://www.sciencedirect.com/science/article/pii/S0010945216301058
https://www.sciencedirect.com/science/article/pii/S0010945216301058
Autor:
Phillips, Holly N., Blenkmann, Alejandro Omar, Hughes, Laura E., Bekinschtein, Tristán Andrés, Rowe, James B.
Publikováno v:
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Brain function can be conceived as a hierarchy of generative models that optimizes predictions of sensory inputs and minimizes “surprise.” Each level of the hierarchy makes predictions of neural events at a lower level in the hierarchy, which ret
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::938f46cd1d10a107982f1241b62f195b
https://www.repository.cam.ac.uk/handle/1810/253599
https://www.repository.cam.ac.uk/handle/1810/253599