Zobrazeno 1 - 10
of 16
pro vyhledávání: '"Beiping Duan"'
Autor:
BEIPING DUAN, BUYANG LI
Publikováno v:
SIAM Journal on Scientific Computing; 2024, Vol. 46 Issue 1, pA587-A608, 22p
Autor:
BEIPING DUAN, ZONGZE YANG
Publikováno v:
SIAM Journal on Scientific Computing; 2023, Vol. 45 Issue 5, pA2226-A2249, 24p
Autor:
Beiping Duan
Publikováno v:
IMA Journal of Numerical Analysis.
This paper focuses on numerical approximation for fractional powers of elliptic operators on two-dimensional manifolds. Firstly, the parametric finite element method is employed to discretize the original problem. We then approximate fractional power
Autor:
Beiping Duan
Publikováno v:
Annals of Applied Mathematics. 37:405-436
Publikováno v:
BIT Numerical Mathematics. 60:1203-1219
The steady state fractional convection diffusion equation with inhomogeneous Dirichlet boundary is considered. By utilizing standard boundary shifting trick, a homogeneous boundary problem is derived with a singular source term which does not belong
Publikováno v:
Journal of Scientific Computing. 88
We consider a finite element method with singularity reconstruction for fractional convection-diffusion equation involving Riemann-Liouville derivative of order $$\alpha \in (1,2)$$ . Jin et al. (ESAIM Math. Model. Numer. Anal. 49(5):1261–1283, 201
Publikováno v:
IMA Journal of Numerical Analysis. 40:1746-1771
In this paper, we develop and study algorithms for approximately solving linear algebraic systems: ${{\mathcal{A}}}_h^\alpha u_h = f_h$, $ 0< \alpha
Autor:
Zhoushun Zheng, Beiping Duan
Publikováno v:
Journal of Scientific Computing. 80:717-742
In this paper we aim at developing highly accurate and stable method in temporal direction for time-fractional diffusion equations with initial data $$v\in L^2(\varOmega )$$ . To this end we begin with a kind of (time-)fractional ODEs, and a hybrid m
Publikováno v:
Journal of Computational Physics. 461:111215
Autor:
Beiping Duan, Zhimin Zhang
Publikováno v:
Journal of Scientific Computing. 87
In this work, we propose a new scheme based on numerical quadrature to calculate the two-parameter Mittag-Leffler function with discrete elliptic operator $$-{\mathcal {L}}_h$$ as input. Except pure mathematical interest from approximation theory, ou