Zobrazeno 1 - 10
of 95
pro vyhledávání: '"Behrstock, Jason A."'
We consider the random right-angled Coxeter group whose presentation graph is an Erdos-Renyi random graph on n vertices with edge probability p=p(n). We establish that p=1/\sqrt{n} is a threshold for relative hyperbolicity of the random right-angled
Externí odkaz:
http://arxiv.org/abs/2407.12959
We study the boundaries of relatively hyperbolic HHGs. Using the simplicial structure on the hierarchically hyperbolic boundary, we characterize both relative hyperbolicity and being thick of order 1 among HHGs. In the case of relatively hyperbolic H
Externí odkaz:
http://arxiv.org/abs/2305.16906
We prove several topological and dynamical properties of the boundary of a hierarchically hyperbolic group are independent of the specific hierarchically hyperbolic structure. This is accomplished by proving that the boundary is invariant under a "ma
Externí odkaz:
http://arxiv.org/abs/2208.07930
Given a graph $\Gamma$, its auxiliary \emph{square-graph} $\square(\Gamma)$ is the graph whose vertices are the non-edges of $\Gamma$ and whose edges are the pairs of non-edges which induce a square (i.e., a $4$-cycle) in $\Gamma$. We determine the t
Externí odkaz:
http://arxiv.org/abs/2009.14442
We give a simple combinatorial criterion, in terms of an action on a hyperbolic simplicial complex, for a group to be hierarchically hyperbolic. We apply this to show that quotients of mapping class groups by large powers of Dehn twists are hierarchi
Externí odkaz:
http://arxiv.org/abs/2005.00567
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Abbott, Carolyn, Behrstock, Jason
In this paper, we establish upper bounds on the length of the shortest conjugator between pairs of infinite order elements in a wide class of groups. We obtain a general result which applies to all hierarchically hyperbolic groups, a class which incl
Externí odkaz:
http://arxiv.org/abs/1808.09604
We consider two manifestations of non-positive curvature: acylindrical actions on hyperbolic spaces and quasigeodesic stability. We study these properties for the class of hierarchically hyperbolic groups, which is a general framework for studying ma
Externí odkaz:
http://arxiv.org/abs/1705.06219
Autor:
Behrstock, Jason
We construct a family of right-angled Coxeter groups which provide counter-examples to questions about the stable boundary of a group, one-endedness of quasi-geodesically stable subgroups, and the commensurability types of right-angled Coxeter groups
Externí odkaz:
http://arxiv.org/abs/1705.03984
The rank of a hierarchically hyperbolic space is the maximal number of unbounded factors in a standard product region. For hierarchically hyperbolic groups, this coincides with the maximal dimension of a quasiflat. Examples for which the rank coincid
Externí odkaz:
http://arxiv.org/abs/1704.04271