Zobrazeno 1 - 10
of 21
pro vyhledávání: '"Behnaz Abdollahi"'
Autor:
Wayner Barrios, Behnaz Abdollahi, Manu Goyal, Qingyuan Song, Matthew Suriawinata, Ryland Richards, Bing Ren, Alan Schned, John Seigne, Margaret Karagas, Saeed Hassanpour
Publikováno v:
Journal of Pathology Informatics, Vol 13, Iss , Pp 100135- (2022)
Background: Recent studies indicate that bladder cancer is among the top 10 most common cancers in the world (Saginala et al. 2022). Bladder cancer frequently reoccurs, and prognostic judgments may vary among clinicians. As a favorable prognosis may
Externí odkaz:
https://doaj.org/article/a27bbe5d62b740408d64b19b2473116f
Autor:
Anne L van de Ven, Behnaz Abdollahi, Carlos J Martinez, Lacey A Burey, Melissa D Landis, Jenny C Chang, Mauro Ferrari, Hermann B Frieboes
Publikováno v:
New Journal of Physics, Vol 15, Iss 5, p 055004 (2013)
Heterogeneities in the perfusion of solid tumors prevent optimal delivery of nanotherapeutics. Clinical imaging protocols for obtaining patient-specific data have proven difficult to implement. It is challenging to determine which perfusion features
Externí odkaz:
https://doaj.org/article/24ba7662549d45be9485beb019a4421d
Autor:
Meredith S Brown, Behnaz Abdollahi, Nevena Ognjenovic, Kristen E Muller, Saeed Hassanpour, Diwakar R Pattabiraman
Publikováno v:
Cancer Research. 82:P4-07
Background: Triple Negative Breast Cancer (TNBC) is an aggressive and heterogeneous subtype characterized by ER/PR/HER2 negative status. Much of the disease potential and aggressive nature of this subtype derives from inter- and intra-tumoral heterog
Publikováno v:
Methods in cell biology. 171
Tumor heterogeneity presents an ongoing challenge to disease progression and treatment in many solid tumor types. Understanding the roots of intra-tumoral heterogeneity and how it may relate to the high incidence of metastasis is critical in overcomi
Autor:
Meredith S. Brown, Behnaz Abdollahi, Owen M. Wilkins, Hanxu Lu, Priyanka Chakraborty, Nevena B. Ognjenovic, Kristen E. Muller, Mohit Kumar Jolly, Brock C. Christensen, Saeed Hassanpour, Diwakar R. Pattabiraman
Publikováno v:
Science advances. 8(31)
The epithelial-to-mesenchymal transition (EMT) is frequently co-opted by cancer cells to enhance migratory and invasive cell traits. It is a key contributor to heterogeneity, chemoresistance, and metastasis in many carcinoma types, where the intermed
Publikováno v:
Methods in Cell Biology ISBN: 9780323900188
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::1246d5320ed6095036dbebf3dd41dd71
https://doi.org/10.1016/bs.mcb.2022.06.003
https://doi.org/10.1016/bs.mcb.2022.06.003
Publikováno v:
Journal of Information Security and Applications. 68:103254
Autor:
Owen M. Wilkins, Saeed Hassanpour, Parijat Chakraborty, Nevena B. Ognjenovic, Diwakar R. Pattabiraman, Behnaz Abdollahi, Mohit Kumar Jolly, Kristen E. Muller, Meredith S. Brown
The Epithelial-to-Mesenchymal Transition (EMT) is a developmental cellular program frequently coopted by cancer cells1 and is a key contributor to both heterogeneity in solid tumors2–4 and later stage chemo-resistance and metastasis5,6. Rather than
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::d168d62c8c7a6c51153c059d9e7a533a
https://doi.org/10.1101/2021.03.17.434993
https://doi.org/10.1101/2021.03.17.434993
Autor:
Adam S. Kim, Xiaoying Liu, John A. Baron, Jason Wei, Arief A. Suriawinata, Dale C. Snover, Bing Ren, Mikhail Lisovsky, Louis J. Vaickus, Behnaz Abdollahi, Saeed Hassanpour, Elizabeth L. Barry, Naofumi Tomita
Publikováno v:
JAMA Network Open
This prognostic study evaluates the performance and generalizability of a deep neural network trained on data from a single institution for classification of colorectal polyps on histopathologic slide images.
Key Points Question Are deep neural
Key Points Question Are deep neural
Publikováno v:
Intelligent Systems Reference Library ISBN: 9783030427481
Data augmentation is widely utilized to achieve more generalizable and accurate deep learning models based on relatively small labeled datasets. Data augmentation techniques are particularly critical in medical applications, where access to labeled d
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::4b84017e6727d1631003b27950749c9c
https://doi.org/10.1007/978-3-030-42750-4_6
https://doi.org/10.1007/978-3-030-42750-4_6