Zobrazeno 1 - 10
of 46
pro vyhledávání: '"Beheshti, Roya"'
Publikováno v:
Forum of Mathematics, Sigma 12 (2024) e112
We study the enumerativity of Gromov-Witten invariants where the domain curve is fixed in moduli and required to pass through the maximum possible number of points. We say a Fano manifold satisfies asymptotic enumerativity if such invariants are enum
Externí odkaz:
http://arxiv.org/abs/2310.15252
Autor:
Araujo, Carolina, Beheshti, Roya, Castravet, Ana-Maria, Jabbusch, Kelly, Makarova, Svetlana, Mazzon, Enrica, Viswanathan, Nivedita, Reynolds, Will
Motivated by the problem of classifying toric $2$-Fano manifolds, we introduce a new invariant for smooth projective toric varieties, the minimal projective bundle dimension. This invariant $m(X)\in\{1, \dots,\dim(X)\}$ captures the minimal degree of
Externí odkaz:
http://arxiv.org/abs/2301.00883
Autor:
Beheshti, Roya, Wormleighton, Ben
We study the Picard rank of smooth toric Fano varieties possessing families of minimal rational curves of given degree. We discuss variants of a conjecture of Chen-Fu-Hwang and prove a version of their statement that recovers the original conjecture
Externí odkaz:
http://arxiv.org/abs/2202.01852
Autor:
Araujo, Carolina, Beheshti, Roya, Castravet, Ana-Maria, Jabbusch, Kelly, Makarova, Svetlana, Mazzon, Enrica, Taylor, Libby, Viswanathan, Nivedita
In this paper we address Fano manifolds with positive higher Chern characters. They are expected to enjoy stronger versions of several of the nice properties of Fano manifolds. For instance, they should be covered by higher dimensional rational varie
Externí odkaz:
http://arxiv.org/abs/2110.02339
We study the space of rational curves on del Pezzo surfaces in positive characteristic. For most primes p we prove the irreducibility of the moduli space of rational curves of a given nef class, extending results of Testa in characteristic 0. We also
Externí odkaz:
http://arxiv.org/abs/2110.00596
Autor:
Beheshti, Roya, Riedl, Eric
We study rational surfaces on very general Fano hypersurfaces in $\mathbb{P}^n$, with an eye toward unirationality. We prove that given any fixed family of rational surfaces, a very general hypersurface of degree $d$ sufficiently close to $n$ and $n$
Externí odkaz:
http://arxiv.org/abs/2107.13584
We prove several classification results for the components of the moduli space of rational curves on a smooth Fano threefold. In particular, we prove a conjecture of Batyrev on the growth of the number of components as the degree increases. The key t
Externí odkaz:
http://arxiv.org/abs/2010.06795
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Beheshti, Roya, Riedl, Eric
Let $X$ be an arbitrary smooth hypersurface in $\mathbb{C} \mathbb{P}^n$ of degree $d$. We prove the de Jong-Debarre Conjecture for $n \geq 2d-4$: the space of lines in $X$ has dimension $2n-d-3$. We also prove an analogous result for $k$-planes: if
Externí odkaz:
http://arxiv.org/abs/1903.02481
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.