Zobrazeno 1 - 1
of 1
pro vyhledávání: '"Beers, Lies"'
Autor:
Beers, Lies, Mulas, Raffaella
For a graph with largest normalized Laplacian eigenvalue $\lambda_N$ and (vertex) coloring number $\chi$, it is known that $\lambda_N\geq \chi/(\chi-1)$. Here we prove properties of graphs for which this bound is sharp, and we study the multiplicity
Externí odkaz:
http://arxiv.org/abs/2402.09160