Zobrazeno 1 - 10
of 28
pro vyhledávání: '"Becerril, Víctor"'
Autor:
Becerril, Víctor
In this paper, we prove that for a $n$-perfect ring $R$ various classes of relative Gorenstein projective $R$-modules are special precovering, among them including the Gorenstein projectives and Ding projectives. Also we prove that the class of proje
Externí odkaz:
http://arxiv.org/abs/2403.10727
Autor:
Becerril, Víctor
In this paper we characterize the relative Gorenstein weak global dimension of the generalized Gorenstein $\mathrm{FP}_n$-flat $R$-modules and Projective Coresolved $\mathrm{FP}_n$-flat $R$-modules recently studied by S. Estrada, A. Iacob, and M. A.
Externí odkaz:
http://arxiv.org/abs/2303.12955
Autor:
Becerril, Víctor, Pérez, Marco A.
We study homological and homotopical aspects of Gorenstein flat modules over a ring with respect to a duality pair $(\mathcal{L,A})$. These modules are defined as cycles of exact chain complexes with components in $\mathcal{L}$ which remain exact aft
Externí odkaz:
http://arxiv.org/abs/2210.11014
From the notion of (co)generator in relative homological algebra, we present the concept of finite balanced system $[(\mathcal{X} , \omega ); (\nu, \mathcal{Y})]$ as a tool to induce balanced pairs $(\mathcal{X} , \mathcal{Y} )$ for the $\mathrm{Hom}
Externí odkaz:
http://arxiv.org/abs/2203.12140
Autor:
Becerril, Víctor
In this paper we develop the homological properties of the $(\mathcal{L}, \mathcal{A})$-Gorenstein flat $R$-modules $\mathcal{GF}_{(\mathcal{F}(R), \mathcal{A})}$ proposed by Gillespie. Where the class $\mathcal{A} \subseteq \mathrm{Mod} (R^{op})$ so
Externí odkaz:
http://arxiv.org/abs/2203.09012
Autor:
Becerril, Víctor
Let $\mathcal{A}$ be an abelian category. In this paper, we investigate the global $(\mathcal{X} , \mathcal{Y})$-Gorenstein projective dimension $\mathrm{gl.GPD}(\mathcal{X} ,\mathcal{Y})(\mathcal{A})$, associated to a GP-admissible pair $(\mathcal{X
Externí odkaz:
http://arxiv.org/abs/2012.10817
Let $\mathcal{A}$ be an abelian category. For a pair $(\mathcal{X},\mathcal{Y}$ of classes of objects in $\mathcal{A},$ we define the weak and the $(\mathcal{X},\mathcal{Y})$-Gorenstein relative projective objects in $\mathcal{A}$. We point out that
Externí odkaz:
http://arxiv.org/abs/1810.08524
Publikováno v:
Journal of Homotopy and Related Structures. volume 14, pages 1-50 (2019)
In this work, we revisit Auslander-Buchweitz Approximation Theory and find some relations with cotorsion pairs and model category structures. From the notions of relatives generators and cogenerators in Approximation Theory, we introduce the concept
Externí odkaz:
http://arxiv.org/abs/1602.07328
Publikováno v:
Journal of Herpetology, 2004 Jun 01. 38(2), 225-231.
Externí odkaz:
https://www.jstor.org/stable/1566218
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.