Zobrazeno 1 - 10
of 18
pro vyhledávání: '"Becerra, Edward"'
In this paper it is shown how to construct a finite topological space $X$ for a given finitely presentable group $G$ such that $\pi_1(X)\cong G$. Our construction is not optimal in the sense that the cardinality of the space $X$ might not be the smal
Externí odkaz:
http://arxiv.org/abs/2012.15395
In this paper we study a natural decomposition of $G$-equivariant $K$-theory of a proper $G$-space, when $G$ is a Lie group with a compact normal subgroup $A$ acting trivially. Our decomposition could be understood as a generalization of the theory k
Externí odkaz:
http://arxiv.org/abs/2003.09777
In this paper we put together some tools from differential topology and analysis in order to study second order semi-linear partial differential equations on a Riemannian manifold $M$. We look for solutions that are constants along orbits of a given
Externí odkaz:
http://arxiv.org/abs/1802.08625
Publikováno v:
Pacific J. Math. 264 (2013) 471-490
We study the relationship between the twisted Orbifold K-theories ${^{\alpha}}K_{orb}(\textsl{X})$ and ${^{\alpha'}}K_{orb}(\textsl{Y})$ for two different twists $\alpha\in Z^3(G;S^1)$ and $\alpha'\in Z^3(G';S^1)$ of the Orbifolds $\textsl{X}=[*/G]$
Externí odkaz:
http://arxiv.org/abs/1203.6383
Autor:
Becerra, Edward, Uribe, Bernardo
In this paper we present a model to calculate the stringy product on twisted orbifold K-theory of Adem-Ruan-Zhang for abelian complex orbifolds. In the first part we consider the non-twisted case on an orbifold presented as the quotient of a manifold
Externí odkaz:
http://arxiv.org/abs/0706.3229
Autor:
Becerra, Edward, Uribe, Bernardo
Publikováno v:
Transactions of the American Mathematical Society, 2009 Nov 01. 361(11), 5781-5803.
Externí odkaz:
http://dx.doi.org/10.1090/S0002-9947-09-04760-6
In this paper it is shown how to construct a finite topological space $X$ for a given finitely presentable group $G$ such that $\pi_1(X)\cong G$. Our construction is not optimal in the sense that the cardinality of the space $X$ might not be the smal
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::87f9c2645d08893863d086a6404354f8
http://arxiv.org/abs/2012.15395
http://arxiv.org/abs/2012.15395
In this paper we study a natural decomposition of $G$-equivariant $K$-theory of a proper $G$-space, when $G$ is a Lie group with a compact normal subgroup $A$ acting trivially. Our decomposition could be understood as a generalization of the theory k
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::67ec03ad86128a916cd6df7673789b00
http://arxiv.org/abs/2003.09777
http://arxiv.org/abs/2003.09777
Autor:
ANDRADE, EDGAR J., BECERRA, EDWARD
Publikováno v:
Revista Colombiana de Matemáticas, Volume: 41, Issue: 1, Pages: 67-80, Published: 15 JUN 2007
Aristotelian syllogistic has been formalized for some time now by means of a natural deduction system, called D by John Corcoran. In a classical paper, Corcoran proves a completeness theorem for such a system. His proof involves the use of a reduced
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______618::b7121ab4eae664898b25f9afc44712b8
http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0034-74262007000100005&lng=en&tlng=en
http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0034-74262007000100005&lng=en&tlng=en
Autor:
Andrade-Lotero, Edgar, BECERRA, EDWARD
Publikováno v:
Repositorio EdocUR-U. Rosario
Universidad del Rosario
instacron:Universidad del Rosario
Universidad del Rosario
instacron:Universidad del Rosario
La silogística aristotélica ha sido formalizada hace ya cierto tiempo por medio de un sistema de deducción natural, llamado D por John Corcoran. En un artículo clásico, Corcoran demuestra un teorema de completitud para dicho sistema. Su demostra
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3056::185968739e5ffafc69bef8a021c7ba70
https://repository.urosario.edu.co/handle/10336/24588
https://repository.urosario.edu.co/handle/10336/24588