Zobrazeno 1 - 10
of 15
pro vyhledávání: '"Beata Medak"'
Autor:
Beata Medak, Alexey A Tret’yakov
Publikováno v:
Boundary Value Problems, Vol 2017, Iss 1, Pp 1-9 (2017)
Abstract The paper studies a solution existence problem of the nonlinear Duffing equation of the form F ( x , μ , β ) = x ″ + x + μ x 3 − β sin t = 0 , β > 0 , μ ≠ 0 , $$ F(x,\mu, \beta)=x''+x+\mu x^{3}-\beta\sin t = 0,\quad \beta > 0, \m
Externí odkaz:
https://doaj.org/article/a29d7606ded34d469abbed80aa6a24bd
Autor:
Alexey Tretyakov, Beata Medak
Publikováno v:
Letters in Mathematical Physics. 112
In this paper, we study a solutions existence problem of the following nonlinear singular Burgers equation $$\begin{aligned} F(u,\varepsilon )=u_{t}'-u_{xx}''+uu_{x}'+\varepsilon u^{2}=f(x,t), \end{aligned}$$ F ( u , ε ) = u t ′ - u xx ′ ′ + u
Autor:
Beata Medak, Alexey A. Tret'yakov
Publikováno v:
Journal of Dynamics and Differential Equations. 33:1087-1107
This paper studies the problem of the continuous dependence of Van der Pol equation solutions with respect to the boundary conditions. We provide a new approach for the existence of such solutions via p-regularity theory. Several existence theorems a
Autor:
Beata Medak, Alexey A. Tret'yakov
Publikováno v:
Doklady Mathematics. 89:112-114
Autor:
Alexey A. Tret'yakov, Beata Medak
Publikováno v:
Topol. Methods Nonlinear Anal. 46, no. 1 (2015), 283-301
In this paper we generalize the notion of $p$-factor operator which is the basic notion of the so-called $p$-regularity theory for nonlinear and degenerated operators. We prove a theorem related to a new construction of $p$-factor operator. The obtai
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6409f0c154f4739b9668c91792a7f458
http://projecteuclid.org/euclid.tmna/1459343895
http://projecteuclid.org/euclid.tmna/1459343895
Autor:
Beata Medak
Publikováno v:
Reports on Mathematical Physics. 49:305-314
We prove that there exists no maximal BCH-invertible subalgebra of P(n) that can be imagined as and called skew with respect to Z -gradation of P(n).
Publikováno v:
Boundary Value Problems. 2013
The paper studies the question of solution existence to a nonlinear equation in the degenerate case. This question is studied for three particular boundary value problems for ordinary and partial second-order differential equations. The so-called p-r
Publikováno v:
Annales UMCS, Mathematica. 66
The theory of p-regularity has approximately twenty-five years’ history and many results have been obtained up to now. The main result of this theory is description of tangent cone to zero set in singular case. However there are numerous nonlinear
Autor:
Beata Medak, Alexey A. Tret'yakov
Publikováno v:
Boundary Value Problems. 2015(1)
The paper studies the existence problem of periodic solutions of the nonlinear dynamical systems in the singular case. We prove a certain generalization of the Andronov-Hopf theorem. This generalization is based on an application of the theorem on a
Publikováno v:
Scopus-Elsevier
Topol. Methods Nonlinear Anal. 41, no. 2 (2013), 255-265
Topol. Methods Nonlinear Anal. 41, no. 2 (2013), 255-265
We apply the so-called $p$-regularity theory to prove the existence of solutions to two nonlinear boundary value problems: an equation of rod bending and some nonlinear Laplace equation.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::7a5adf182d5c910735b9e9da6b9d7ffa
http://www.scopus.com/inward/record.url?eid=2-s2.0-84879378938&partnerID=MN8TOARS
http://www.scopus.com/inward/record.url?eid=2-s2.0-84879378938&partnerID=MN8TOARS