Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Beata Derȩgowska"'
Publikováno v:
Symmetry, Vol 13, Iss 9, p 1556 (2021)
We consider a nonlinear Dirichlet problem driven by the double phase differential operator and with a superlinear reaction which need not satisfy the Ambrosetti–Rabinowitz condition. Using the Nehari manifold, we show that the problem has at least
Externí odkaz:
https://doaj.org/article/501561c176cd4b2f96106ed709470954
Autor:
Beata Derȩgowska, Barbara Lewandowska
Let $\lambda_\mathbb{K}(m)$ denote the maximal absolute projection constant over the subspaces of dimension $m$. Apart from the trivial case for $ m=1$, the only known value of $\lambda_\mathbb{K}(m)$ is for $ m=2$ and $\mathbb{K}=\mathbb{R}.$ In 196
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e76447d109b3d7ada3634526b66c9667
https://ruj.uj.edu.pl/xmlui/handle/item/311201
https://ruj.uj.edu.pl/xmlui/handle/item/311201
Let $\lambda(m)$ denote the maximal absolute projection constant over real $m$-dimensional subspaces. This quantity is extremely hard to determine exactly, as testified by the fact that the only known value of $\lambda(m)$ for $m>1$ is $\lambda(2)=4/
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::321f784320be8e36dedd55a211df29b3
https://ruj.uj.edu.pl/xmlui/handle/item/298462
https://ruj.uj.edu.pl/xmlui/handle/item/298462
Publikováno v:
Results in Mathematics. 77
The investigations of the smooth points in the spaces of continuous function were started by Banach in 1932 considering function space $$\mathcal {C}(\Omega )$$ C ( Ω ) . Singer and Sundaresan extended the result of Banach to the space of vector val