Zobrazeno 1 - 10
of 130
pro vyhledávání: '"Bayer, Fabio M."'
Publikováno v:
Hydrological Sciences Journal, Volume 64, 2019
The Pettitt test has been widely used in climate change and hydrological analyzes. However, studies evidence difficulties of this test in detecting change points, especially in small samples. This study presents a bootstrap application of the Pettitt
Externí odkaz:
http://arxiv.org/abs/2411.05233
Autor:
Madanayake, Arjuna, Ariyarathna, Viduneth, Madishetty, Suresh, Pulipati, Sravan, Cintra, R. J., Coelho, Diego, Oliveira, Raíza, Bayer, Fábio M., Belostotski, Leonid, Mandal, Soumyajit, Rappaport, Theodore S.
Publikováno v:
IEEE Transactions on Antennas and Propagation, v. 68, n. 2, Feb. 2020
Millimeter wave communications require multibeam beamforming in order to utilize wireless channels that suffer from obstructions, path loss, and multi-path effects. Digital multibeam beamforming has maximum degrees of freedom compared to analog phase
Externí odkaz:
http://arxiv.org/abs/2207.09054
Publikováno v:
In Applied Mathematical Modelling January 2025 137 Part A
Autor:
Putzke, Josué Lopes, Bayer, Fábio M., Jaime, Adriano Marques, Haab, Charles Andre, Bellinaso, Lucas Vizzotto, Michels, Leandro
Publikováno v:
In Solar Energy August 2024 278
Publikováno v:
In International Journal of Forecasting April-June 2024 40(2):721-734
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Over 50% of the world population is at risk of mosquito-borne diseases. Female Ae. aegypti mosquito species transmit Zika, Dengue, and Chikungunya. The spread of these diseases correlate positively with the vector population, and this population depe
Externí odkaz:
http://arxiv.org/abs/1911.08979
Publikováno v:
In Computers & Industrial Engineering March 2023 177
Publikováno v:
In International Journal of Forecasting January-March 2023 39(1):98-109
Publikováno v:
Journal of Statistical Computation and Simulation, 2018
In this paper we introduce the class of beta seasonal autoregressive moving average ($\beta$SARMA) models for modeling and forecasting time series data that assume values in the standard unit interval. It generalizes the class of beta autoregressive
Externí odkaz:
http://arxiv.org/abs/1806.07921