Zobrazeno 1 - 10
of 524
pro vyhledávání: '"Bayésien"'
Autor:
Guironnet, Jean-Pascal
Publikováno v:
Revue d'économie politique, 2018 Jul 01. 128(4), 641-666.
Externí odkaz:
https://www.jstor.org/stable/26596231
Publikováno v:
Revue économique, 2018 Jul 01. 69(4), 575-591.
Externí odkaz:
https://www.jstor.org/stable/90022136
Publikováno v:
International Statistical Review / Revue Internationale de Statistique, 2003 Dec 01. 71(3), 473-495.
Externí odkaz:
https://www.jstor.org/stable/1403824
Autor:
Ethier, Danielle M., Nudds, Thomas D.
Publikováno v:
The Condor, 2015 Nov 01. 117(4), 545-559.
Externí odkaz:
https://www.jstor.org/stable/90008983
Publikováno v:
Academic Journal of Civil Engineering
Academic Journal of Civil Engineering, A paraître, 12ème Journées de Fiabilité des Matériaux et des Structures (JFMS 2023), 41 (3), pp.10
Academic Journal of Civil Engineering, A paraître, 12ème Journées de Fiabilité des Matériaux et des Structures (JFMS 2023), 41 (3), pp.10
International audience; L'article présente une méthodologie pour établir une cartographie d'alarme de corrosion liée aux niveaux de corrosion des armatures de la première couche dans des structures en béton armé (RC). Les données d'inspection
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______4074::e095a2e57fb3affcc33e5f83d392b07a
https://hal.science/hal-04124387
https://hal.science/hal-04124387
Autor:
Dadoun, Hind
Publikováno v:
Artificial Intelligence [cs.AI]. Université Côte d'Azur, 2022. English. ⟨NNT : 2022COAZ4071⟩
The focus of our study is to analyze how machine learning tools can be used for the automatic interpretation of abdominal ultrasound images, with a major setback : the absence of curated, annotated and openly available abdominal US databases. In this
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______165::2c837d3e1cddac94a7cf58b02f653557
https://inria.hal.science/tel-03984539
https://inria.hal.science/tel-03984539
Autor:
Amiri, Arij
Publikováno v:
Statistiques [math.ST]. Université de Lille, 2022. Français. ⟨NNT : 2022ULILB030⟩
This Ph.D. thesis gathers some works concerning change-point problems for stochastic processes. In Part one, we are interested in the problem of the estimation, from [dollar]n[dollar] independent observations of an inhomogeneous Poisson process, of t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______4254::36a3fab687804cdbd2d42409ac4474c8
https://theses.hal.science/tel-04051226
https://theses.hal.science/tel-04051226
Autor:
Cocci, Riccardo
Publikováno v:
Fluids mechanics [physics.class-ph]. Université Paris-Saclay, 2022. English. ⟨NNT : 2022UPAST122⟩
The BEPU (Best Estimate Plus Uncertainty) methodology is based on the validation and the uncertainty quantification of the physical models used in the nuclear computer codes. Having a robust methodology to calibrate a physical model, validate it and
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3515::482e7edf2ee867f3a30660cc74413b33
https://theses.hal.science/tel-03892219/document
https://theses.hal.science/tel-03892219/document
Publikováno v:
[Research Report] RR-9474, Inria. 2022, pp.22
An explicit expression for the sensitivity of the expected empirical risk (EER) induced by the Gibbs algorithm (GA) is presented in the context of supervised machine learning. The sensitivity is defined as the difference between the EER induced by th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______165::968342e135d926a3cef5ca4f25b24680
https://hal.science/hal-03703628v3/file/V2-INRIA-RR9474.pdf
https://hal.science/hal-03703628v3/file/V2-INRIA-RR9474.pdf
Autor:
Petit, Jeffery
Publikováno v:
Psychologie. Université de Nantes, 2022. Français. ⟨NNT : ⟩
Risk perception is a crucial aspect that needs to be investigated in order to promote the acceptance of autonomous vehicles in shared spaces with pedestrians. This thesis is structured around three empirical contributions. The first contribution focu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______165::479fa78204b5d5955e670d9ba7f9094e
https://hal.science/tel-03759762
https://hal.science/tel-03759762