Zobrazeno 1 - 10
of 57
pro vyhledávání: '"Bauzet, Caroline"'
The aim of this contribution is to address the convergence study of a time and space approximation scheme for an Allen-Cahn problem with constraint and perturbed by a multiplicative noise of It\^o type. The problem is set in a bounded domain of $\mat
Externí odkaz:
http://arxiv.org/abs/2407.04399
We address an original approach for the convergence analysis of a finite-volume scheme for the approximation of a stochastic diffusion-convection equation with multiplicative noise in a bounded domain of $\mathbb{R}^d$ (with $d=2$ or $3$) and with ho
Externí odkaz:
http://arxiv.org/abs/2304.02259
We propose a two-point flux approximation finite-volume scheme for a stochastic non-linear parabolic equation with a multiplicative noise. The time discretization is implicit except for the stochastic noise term in order to be compatible with stochas
Externí odkaz:
http://arxiv.org/abs/2303.13125
Publikováno v:
ESAIM Math. Model. Numer. Anal. 57 (2023), no.2, 745-783
We study here the approximation by a finite-volume scheme of a heat equation forced by a Lipschitz continuous multiplicative noise in the sense of It\^o. More precisely, we consider a discretization which is semi-implicit in time and a two-point flux
Externí odkaz:
http://arxiv.org/abs/2203.09851
In this contribution, a stochastic nonlinear evolution system under Neumann boundary conditions is investigated. Precisely, we are interested in finding an existence and uniqueness result for a random heat equation coupled with a Barenblatt's type eq
Externí odkaz:
http://arxiv.org/abs/1912.09728
Autor:
Bauzet, Caroline
Cette thèse s’inscrit dans le domaine mathématique de l’analyse des équations aux dérivées partielles (EDP) non-linéaires stochastiques. Nous nous intéressons à des EDP paraboliques et hyperboliques que l’on perturbe stochastiqu
Externí odkaz:
http://www.theses.fr/2013PAUU3007/document
Autor:
Bauzet, Caroline1, Nabet, Flore2, Schmitz, Kerstin3 kerstin.schmitz@uni-due.de, Zimmermann, Aleksandra3
Publikováno v:
ESAIM: Mathematical Modelling & Numerical Analysis (ESAIM: M2AN). Mar/Apr2023, Vol. 57 Issue 2, p745-783. 39p.
The aim of this paper is to address the convergence analysis of a finite-volume scheme for the approximation of a stochastic non-linear parabolic problem set in a bounded domain of $\mathbb{R}^2$ and under homogeneous Neumann boundary conditions. The
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ef0e489145207a5eb62ad08516d14bc0
https://hal.science/hal-04077628
https://hal.science/hal-04077628
Autor:
Bauzet, Caroline
Publikováno v:
In Mathematics and Computers in Simulation December 2015 118:73-86
Publikováno v:
15th World Congress on Computational Mechanics (WCCM-XV) & 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)
15th World Congress on Computational Mechanics (WCCM-XV) & 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII), Jul 2022, yokohama, Japan
15th World Congress on Computational Mechanics (WCCM-XV) & 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII), Jul 2022, yokohama, Japan
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3430::fdac86c43cd4ebd0db7176f3f7015bfe
https://hal.science/hal-03909625
https://hal.science/hal-03909625