Zobrazeno 1 - 10
of 21
pro vyhledávání: '"Batte, Herbert"'
Autor:
Batte, Herbert, Kaggwa, Prosper
Let $ \{P_n\}_{n\geq 0} $ be the sequence of Perrin numbers defined by $P_0=3$, $P_1=0$,$P_2=2$ and $P_{n+3}=P_{n+1}+P_{n}$ for all $n \geq 0$. In this paper, we determine all Perrin numbers that are palindromic concatenations of two repdigits.
Externí odkaz:
http://arxiv.org/abs/2408.10712
Autor:
Batte, Herbert, Luca, Florian
Let $ \{T_n\}_{n\geq 0} $ be the sequence of Tribonacci numbers. In this paper, we study the exponential Diophantine equation $T_n-2^x3^y=c$, for $n,x,y\in \mathbb{Z}_{\ge0}$. In particular, we show that there is no integer $c$ with at least six repr
Externí odkaz:
http://arxiv.org/abs/2403.17953
Let $ \{L_n\}_{n\geq 0} $ be the sequence of Lucas numbers. In this paper, we look at the exponential Diophantine equation $L_n-2^x3^y=c$, for $n,x,y\in \mathbb{Z}_{\ge0}$. We treat the cases $c\in -\mathbb{N}$, $c=0$ and $c\in \mathbb{N}$ independen
Externí odkaz:
http://arxiv.org/abs/2401.06555
Autor:
Batte, Herbert
Let $ \{L_n\}_{n\geq 0} $ be the sequence of Lucas numbers. In this paper, we determine all Lucas numbers that are palindromic concatenations of two distinct repdigits.
Comment: 12 pages
Comment: 12 pages
Externí odkaz:
http://arxiv.org/abs/2401.05361
Let $(L_n^{(k)})_{n\geq 2-k}$ be the sequence of $k$-generalized Lucas numbers for some fixed integer $k\ge 2$, whose first $k$ terms are $0,\;\ldots\;,\;0,\;2,\;1$ and each term afterward is the sum of the preceding $k$ terms. In this paper, we find
Externí odkaz:
http://arxiv.org/abs/2311.14001
Autor:
Batte, Herbert, Luca, Florian
Let $(L_n^{(k)})_{n\geq 2-k}$ be the sequence of $k$--generalized Lucas numbers for some fixed integer $k\ge 2$ whose first $k$ terms are $0,\ldots,0,2,1$ and each term afterwards is the sum of the preceding $k$ terms. For an integer $m$, let $P(m)$
Externí odkaz:
http://arxiv.org/abs/2311.13047
Publikováno v:
Glasnik Matematicki, 2022
Let $ \{F_n\}_{n\ge 0} $ be the sequence of Fibonacci numbers and let $p$ be a prime. For an integer $c$ we write $m_{F,p}(c)$ for the number of distinct representations of $c$ as $F_k-p^\ell$ with $k\ge 2$ and $\ell\ge 0$. We prove that $m_{F,p}(c)\
Externí odkaz:
http://arxiv.org/abs/2207.12868
Let $ (P_n)_{n\ge 0}$ be the sequence of Perrin numbers defined by ternary relation $ P_0=3 $, $ P_1=0 $, $ P_2=2 $, and $ P_{n+3}=P_{n+1}+P_n $ for all $ n\ge 0 $. In this paper, we use Baker's theory for nonzero linear forms in logarithms of algebr
Externí odkaz:
http://arxiv.org/abs/2105.08515
Publikováno v:
In Indagationes Mathematicae September 2024
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.