Zobrazeno 1 - 10
of 1 439
pro vyhledávání: '"Bass, R"'
Publikováno v:
J. Math. Soc. Japan(2) 58 (2006), 485-519
Let $(X,d,\mu)$ be a metric measure space with a local regular Dirichlet form. We give necessary and sufficient conditions for a parabolic Harnack inequality with global space-time scaling exponent $\beta\ge 2$ to hold. We show that this parabolic Ha
Externí odkaz:
http://arxiv.org/abs/2001.06714
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
For each $n$ let $Y^n_t$ be a continuous time symmetric Markov chain with state space $n^{-1} \Z^d$. A condition in terms of the conductances is given for the convergence of the $Y^n_t$ to a symmetric Markov process $Y_t$ on $\R^d$. We have weak conv
Externí odkaz:
http://arxiv.org/abs/0807.3268
We study functionals of the form \[\zeta_{t}=\int_0^{t}...\int_0^{t} | X_1(s_1)+...+ X_p(s_p)|^{-\sigma}ds_1... ds_p\] where $X_1(t),..., X_p(t)$ are i.i.d. $d$-dimensional symmetric stable processes of index $0<\bb\le 2$. We obtain results about the
Externí odkaz:
http://arxiv.org/abs/0712.2401
We investigate the relationships between the parabolic Harnack inequality, heat kernel estimates, some geometric conditions, and some analytic conditions for random walks with long range jumps. Unlike the case of diffusion processes, the parabolic Ha
Externí odkaz:
http://arxiv.org/abs/math/0702221
We consider the symmetric non-local Dirichlet form $(E, F)$ given by \[ E (f,f)=\int_{R^d} \int_{R^d} (f(y)-f(x))^2 J(x,y) dx dy \] with $F$ the closure of the set of $C^1$ functions on $R^d$ with compact support with respect to $E_1$, where $E_1 (f,
Externí odkaz:
http://arxiv.org/abs/math/0609842
Autor:
Bass, R., Del Popolo, A.
Publikováno v:
International Journal of Modern Physics D, Volume 14, Issue 01, pp. 153-169 (2005)
In a planetary or satellite system, idealized as n small bodies in initially coplanar, concentric orbits around a large central body, obeying Newtonian point-particle mechanics, resonant perturbations will cause dynamical evolution of the orbital rad
Externí odkaz:
http://arxiv.org/abs/astro-ph/0407495
Publikováno v:
Proceedings of the American Mathematical Society, 2004 Oct 01. 132(10), 2951-2958.
Externí odkaz:
https://www.jstor.org/stable/4097257
Autor:
Fernando, Amali M., Nicholas, Joyce S., O'Brien, Peter, Shabani, Hamisi, Janabi, Mohamed, Kisenge, Peter, Ellegala, Dilantha B., Bass, R. Daniel
Publikováno v:
In World Neurosurgery February 2017 98:603-613