Zobrazeno 1 - 10
of 27
pro vyhledávání: '"Basok, Mikhail"'
Autor:
Basok, Mikhail
We consider the dimer model on a bipartite graph embedded into a locally flat Riemann surface with conical singularities and satisfying certain geometric conditions in the spirit of the work of Chelkak, Laslier and Russkikh, see arXiv:2001.11871. Fol
Externí odkaz:
http://arxiv.org/abs/2309.14522
Consider a compact $M \subset \mathbb{R}^d$ and $r > 0$. A maximal distance minimizer problem is to find a connected compact set $\Sigma$ of the minimal length, such that \[ \max_{y \in M} dist (y, \Sigma) \leq r. \] The inverse problem is to determi
Externí odkaz:
http://arxiv.org/abs/2212.01903
For a non-cyclic free group $F$, the second homology of its pronilpotent completion $H_2(\widehat F)$ is not a cotorsion group.
Externí odkaz:
http://arxiv.org/abs/2107.01485
Autor:
Basok, Mikhail
We continue the study of the rational Picard group of the moduli space of Hitchin's spectral covers started in P. Zograf's and D. Korotkin's work [11]. In the first part of the paper we expand the ``boundary'', ``Maxwell stratum'' and ``caustic'' div
Externí odkaz:
http://arxiv.org/abs/1904.00489
We prove that the set of $n$-point configurations for which the solution of the planar Steiner problem is not unique has the Hausdorff dimension at most $2n-1$ (as a subset of $\mathbb{R}^{2n}$). Moreover, we show that the Hausdorff dimension of the
Externí odkaz:
http://arxiv.org/abs/1809.01463
Autor:
Basok, Mikhail, Chelkak, Dmitry
Building upon recent results of Dub\'edat (see arXiv:1403.6076) on the convergence of topological correlators in the double-dimer model considered on Temperleyan approximations $\Omega^\delta$ to a simply connected domain $\Omega\subset\mathbb C$ we
Externí odkaz:
http://arxiv.org/abs/1809.00690
Autor:
Basok, Mikhail
Let $C$ be a smooth projective curve of genus $g\geq 3$ and let $\eta$ be an odd theta characteristic on it such that $h^0(C,\eta) = 1$. Pick a point $p$ from the support of $\eta$ and consider the one-dimensional linear system $|\eta + p|$. In gener
Externí odkaz:
http://arxiv.org/abs/1509.02359
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Basok, Mikhail
The goal of the paper is to give an analytic proof of the formula of G. Farkas for the divisor class of spinors with multiple zeros in the moduli space of odd spin curves. We make use of the technique developed by Korotkin and Zograf that is based on
Externí odkaz:
http://arxiv.org/abs/1405.7865
Publikováno v:
Israel Journal of Mathematics; May2024, Vol. 261 Issue 1, p281-312, 32p