Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Baslingker, Jnaneshwar"'
We prove log-concavity of the lengths of the top rows of Young diagrams under Poissonized Plancherel measure. This is the first known positive result towards a conjecture of Chen that the length of the top row of a Young diagram under the Plancherel
Externí odkaz:
http://arxiv.org/abs/2412.15116
The scaled and centered largest eigenvalue of the $n\times n$ principal minor of an infinite GUE matrix, denoted by $\widetilde{\lambda}_n$, converges to the GUE Tracy-Widom distribution. We show that $\liminf\limits_{n\to \infty}(\log n)^{-1/3}\wide
Externí odkaz:
http://arxiv.org/abs/2410.11836
Hermite and Laguerre $\beta$-ensembles are important and well studied models in random matrix theory with special cases $\beta=1,2,4$ corresponding to eigenvalues of classical random matrix ensembles. It is well known that the largest eigenvalues in
Externí odkaz:
http://arxiv.org/abs/2405.12215
Autor:
Baslingker, Jnaneshwar, Dan, Biltu
In this article, we study exponents which preserve complete monotonicity of functions on lattices. We prove that for any completely monotone function $f$ on a finite lattice, $f^\alpha$ is completely monotone for all $\alpha\geq c$, where $c$ is expl
Externí odkaz:
http://arxiv.org/abs/2312.02766
Autor:
Baslingker, Jnaneshwar
We give a stochastic comparison and ordering of the largest eigenvalues, with parameter $\beta$, for Hermite $\beta$-ensembles and Laguerre $\beta$-ensembles. Taking limit, we recover a stochastic domination result for Tracy-Widom distributions obtai
Externí odkaz:
http://arxiv.org/abs/2304.09236
We develop a general universality technique for establishing metric scaling limits of critical random discrete structures exhibiting mean-field behavior that requires four ingredients: (i) from the barely subcritical regime to the critical window, co
Externí odkaz:
http://arxiv.org/abs/2303.10082
Autor:
Baslingker, Jnaneshwar
A famous result of Horn and Fitzgerald is that the $\beta$-th Hadamard power of any $n\times n$ positive semi-definite (p.s.d) matrix with non-negative entries is p.s.d $\forall \beta\geq n-2$ and is not necessarliy p.s.d for $\beta< n-2,$ with $\ \b
Externí odkaz:
http://arxiv.org/abs/2210.15320
Autor:
Baslingker, Jnaneshwar, Dan, Biltu
Consider the set of scalars $\alpha$ for which the $\alpha$th Hadamard power of any $n\times n$ positive semi-definite (p.s.d.) matrix with non-negative entries is p.s.d. It is known that this set is of the form $\{0, 1, \dots, n-3\}\cup [n-2, \infty
Externí odkaz:
http://arxiv.org/abs/2201.04443
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.