Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Bartosz Rybicki"'
Publikováno v:
Integer Programming and Combinatorial Optimization ISBN: 9783319592497
IPCO
IPCO
In the maximum traveling salesman problem (Max TSP) we are given a complete undirected graph with nonnegative weights on the edges and we wish to compute a traveling salesman tour of maximum weight. We present a fast combinatorial \(\frac{4}{5}\) –
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::9034b6c541b374351161b12c86b22e78
https://doi.org/10.1007/978-3-319-59250-3_15
https://doi.org/10.1007/978-3-319-59250-3_15
Publikováno v:
Integer Programming and Combinatorial Optimization ISBN: 9783319334608
IPCO
IPCO
We study the Capacitated k-Median problem, for which all the known constant factor approximation algorithms violate either the number of facilities or the capacities. While the standard LP-relaxation can only be used for algorithms violating one of t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::575d9198eb41a52931232384af9eccec
https://doi.org/10.1007/978-3-319-33461-5_22
https://doi.org/10.1007/978-3-319-33461-5_22
Autor:
Bartosz Rybicki, Jaroslaw Byrka
Publikováno v:
Approximation and Online Algorithms ISBN: 9783319182629
WAOA
WAOA
We consider the Fault-Tolerant Facility Placement problem (\(FTFP\)), which is a generalization of the classical Uncapacitated Facility Location problem (\(UFL\)). In the \(FTFP\) problem we have a set of clients \(C\) and a set of facilities \(F\).
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::db69e81332df12b56c5995fe60b0e081
https://doi.org/10.1007/978-3-319-18263-6_6
https://doi.org/10.1007/978-3-319-18263-6_6
Autor:
Aravind Srinivasan, Khoa Trinh, Joachim Spoerhase, Bartosz Rybicki, Thomas W. Pensyl, Jaroslaw Byrka
Publikováno v:
Algorithms-ESA 2015 ISBN: 9783662483497
Knapsack median is a generalization of the classic k-median problem in which we replace the cardinality constraint with a knapsack constraint. It is currently known to be 32-approximable. We improve on the best known algorithms in several ways, inclu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::5a51226f4d43f85f642a580abbe3f694
https://doi.org/10.1007/978-3-662-48350-3_24
https://doi.org/10.1007/978-3-662-48350-3_24
Publikováno v:
Approximation and Online Algorithms ISBN: 9783319080000
WAOA
WAOA
The state of the art in approximation algorithms for facility location problems are complicated combinations of various techniques. In particular, the currently best 1.488-approximation algorithm for the uncapacitated facility location (UFL) problem
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::9013e9f3a59fbcf56cc4e01d1195f36a
https://doi.org/10.1007/978-3-319-08001-7_8
https://doi.org/10.1007/978-3-319-08001-7_8
Autor:
Jaroslaw Byrka, Bartosz Rybicki
Publikováno v:
Automata, Languages, and Programming ISBN: 9783642315930
ICALP (1)
ICALP (1)
We study the k-level uncapacitated facility location problem, where clients need to be connected with paths crossing open facilities of k types (levels). In this paper we give an approximation algorithm that for any constant k, in polynomial time, de
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::e5abbc19bd9af79d399172e118d8231d
https://doi.org/10.1007/978-3-642-31594-7_14
https://doi.org/10.1007/978-3-642-31594-7_14
Publikováno v:
Theory of Computing Systems, 58(1)
We study the k-level uncapacitated facility location problem (k-level UFL) in which clients need to be connected with paths crossing open facilities of k types (levels). In this paper we first propose an approximation algorithm that for any constant