Zobrazeno 1 - 10
of 163
pro vyhledávání: '"Bart Kosko"'
Autor:
Olaoluwa Adigun, Bart Kosko
Publikováno v:
2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA).
Autor:
Akash Kumar Panda, Bart Kosko
Publikováno v:
2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA).
Autor:
Bart Kosko
Publikováno v:
2022 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).
Autor:
Bart Kosko
Publikováno v:
IEEE Transactions on Systems, Man, and Cybernetics: Systems. 51:103-115
Bidirectional associative memories (BAMs) pass neural signals forward and backward through the same web of synapses. Earlier BAMs had no hidden neurons and did not use supervised learning. They tuned their synaptic weights with unsupervised Hebbian o
Autor:
Olaoluwa Adigun, Bart Kosko
Publikováno v:
IEEE Transactions on Systems, Man, and Cybernetics: Systems. 50:1982-1994
We extend backpropagation (BP) learning from ordinary unidirectional training to bidirectional training of deep multilayer neural networks. This gives a form of backward chaining or inverse inference from an observed network output to a candidate inp
Autor:
Akash Kumar Panda, Bart Kosko
Publikováno v:
Advances in Intelligent Systems and Computing ISBN: 9783030815608
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b4ed6cd2d6c6d403641e6ecd3212d5b4
https://doi.org/10.1007/978-3-030-81561-5_21
https://doi.org/10.1007/978-3-030-81561-5_21
Autor:
Olaoluwa Adigun, Bart Kosko
Publikováno v:
2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA).
Autor:
Olaoluwa Adigun, Bart Kosko
Publikováno v:
2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA).
Autor:
Olaoluwa Adigun, Bart Kosko
Publikováno v:
IJCNN
We show that training neural classifiers with Bayesian bidirectional backpropagation improves the performance of the network. Bidirectional backpropagation trains a deep network for both forward and backward recall through the same layers of neurons
Autor:
Akash Kumar Panda, Bart Kosko
Publikováno v:
FUZZ-IEEE
A random rule foam grows and combines several independent fuzzy rule-based systems by randomly sampling input-output data from a trained deep neural classifier. The random rule foam defines an interpretable proxy system for the sampled black-box clas