Zobrazeno 1 - 10
of 46
pro vyhledávání: '"Barron, Tatyana"'
For the purposes of abstract theory of signal propagation, a signal is a submanifold of a Riemannian manifold. We obtain energy inequalities, or upper bounds, lower bounds on energy in a number of specific cases, including parameter spaces of Gaussia
Externí odkaz:
http://arxiv.org/abs/2408.15375
Autor:
Barron, Tatyana
In signal processing, a signal is a function. Conceptually, replacing a function by its graph, and extending this approach to a more abstract setting, we define a signal as a submanifold M of a Riemannian manifold (with corners) that satisfies additi
Externí odkaz:
http://arxiv.org/abs/2403.15978
Autor:
Barron, Tatyana, Francis, Michael
Melrose defined the $b$-tangent bundle of a smooth manifold $M$ with boundary as the vector bundle whose sections are vector fields on $M$ tangent to the boundary. Mendoza defined a complex $b$-manifold as a manifold with boundary together with an in
Externí odkaz:
http://arxiv.org/abs/2310.08013
Autor:
Barron, Tatyana, Francis, Michael
The $b$-calculus of Melrose is a tool for studying structures on a smooth manifold with a first order degeneracy at a given hypersurface. In this framework, Mendoza defined complex $b$-manifolds. In the spirit of work of Scott, we extend Mendoza's de
Externí odkaz:
http://arxiv.org/abs/2310.08014
Autor:
Barron, Tatyana, Saikia, Manimugdha
We study the entanglement of quantum states associated with submanifolds of Kaehler manifolds. As a motivating example, we discuss the semiclassical asymptotics of entanglement entropy of pure states on the two dimensional sphere with the standard me
Externí odkaz:
http://arxiv.org/abs/2309.16881
Autor:
Barron, Tatyana, Saikia, Manimugdha
We determine the $N\to \infty$ asymptotics of the expected value of entanglement entropy in $H_{1,N}\otimes H_{2,N}$, where $H_{1,N}$ and $H_{2,N}$ are the spaces of holomorphic sections of the $N$-th tensor powers of hermitian ample line bundles on
Externí odkaz:
http://arxiv.org/abs/2303.14629
Autor:
Barron, Tatyana, Kazachek, Alexander
Let $H_k$, $k\in {\mathbb{N}}$, be the Hilbert spaces of geometric quantization on a K\"ahler manifold $M$. With two points in $M$ we associate a Bell-type state $b_k \in H_k\otimes H_k$. When $M$ is compact or when $M$ is ${\mathbb{C}}^n$, we provid
Externí odkaz:
http://arxiv.org/abs/2303.06185
Autor:
Barron, Tatyana, Wheatley, Noah
We consider a sequence of quantum states, $\rho_N$, associated with a submanifold $\Lambda$ of product of two integral compact K\"ahler manifolds. We show that, when $\Lambda$ is a product submanifold, then, in the semiclassical limit, these states a
Externí odkaz:
http://arxiv.org/abs/2104.10597
Autor:
Barron, Tatyana
We obtain asymptotics of sequences of the holomorphic sections of the pluricanonical bundles on ball quotients associated to closed geodesics. A nonvanishing result follows.
Externí odkaz:
http://arxiv.org/abs/1808.01245