Zobrazeno 1 - 10
of 178
pro vyhledávání: '"Barrios, Maria A."'
Autor:
Lomnitz, Michael, Lopatina, Nina, Gamble, Paul, Hampel-Arias, Zigfried, Tindall, Lucas, Mejia, Felipe A., Barrios, Maria Alejandra
It is critical to understand the privacy and robustness vulnerabilities of machine learning models, as their implementation expands in scope. In membership inference attacks, adversaries can determine whether a particular set of data was used in trai
Externí odkaz:
http://arxiv.org/abs/1911.01888
Autor:
Mejia, Felipe A., Gamble, Paul, Hampel-Arias, Zigfried, Lomnitz, Michael, Lopatina, Nina, Tindall, Lucas, Barrios, Maria Alejandra
Adversarial training was introduced as a way to improve the robustness of deep learning models to adversarial attacks. This training method improves robustness against adversarial attacks, but increases the models vulnerability to privacy attacks. In
Externí odkaz:
http://arxiv.org/abs/1906.06449
Autor:
Nandwana, Mahesh Kumar, van Hout, Julien, McLaren, Mitchell, Richey, Colleen, Lawson, Aaron, Barrios, Maria Alejandra
The "VOiCES from a Distance Challenge 2019" is designed to foster research in the area of speaker recognition and automatic speech recognition (ASR) with the special focus on single channel distant/far-field audio, under noisy conditions. The main ob
Externí odkaz:
http://arxiv.org/abs/1902.10828
Autor:
Rozema, Tom, Heisterkamp, Joos, Schaefer, Markus, Ozsahin, Esat-Mahmut, de Haan, Jacco, Willem van den Berg, Jan, Duprez, Frederic, Callebout, Eduard, van Daele, Elke, Hacker, Ulrich, Hoffmeister, Albrecht, Kuhnt, Thomas, Denecke, Timm, Kluge, Regine, Prager, Gerald, Ilhan-Mutlu, A., Cuicchi, Dajana, Ardizzoni, Andrea, Rosman, Camiel, Gootjes, Elske C., Rütten, Heidi, Puccetti, Francesco, Cascinu, Stefano, Slim, Najla, Barrios, Maria Eugenia, Fernandez, Maria Carmen, Martí-Oriol, Roberto, Alvaro, Marisol Huerta, Vera, Almudena, Jordá, Esther, Mozos, Fernando L., Reig, Anna, Visa, Laura, Ciseł, Bogumiła, Czechowska, Joanna, Kwietniewska, Magdalena, Pikuła, Agnieszka, Skórzewska, Magdalena, Kozłowska, Aleksandra, Rawicz-Pruszyński, Karol, Kroese, Tiuri E., van Laarhoven, Hanneke W.M., Schoppman, Sebastian F., Deseyne, Pieter R.A.J., van Cutsem, Eric, Haustermans, Karin, Nafteux, Philippe, Thomas, Melissa, Obermannova, Radka, Mortensen, Hanna R., Nordsmark, Marianne, Pfeiffer, Per, Elme, Anneli, Adenis, Antoine, Piessen, Guillaume, Bruns, Christiane J., Lordick, Florian, Gockel, Ines, Moehler, Markus, Gani, Cihan, Liakakos, Theodore, Reynolds, John, Morganti, Alessio G., Rosati, Riccardo, Castoro, Carlo, Cellini, Francesco, D'Ugo, Domenico, Roviello, Franco, Bencivenga, Maria, de Manzoni, Giovanni, van Berge Henegouwen, Mark I., Hulshof, Maarten C.C.M., van Dieren, Jolanda, Vollebergh, Marieke, van Sandick, Johanna W., Jeene, Paul, Muijs, Christel T., Slingerland, Marije, Voncken, Francine E.M., Hartgrink, Henk, Creemers, Geert-Jan, van der Sangen, Maurice J.C., Nieuwenhuijzen, Grard, Berbee, Maaike, Verheij, Marcel, Wijnhoven, Bas, Beerepoot, Laurens V., Mohammad, Nadia H., Mook, Stella, Ruurda, Jelle P., Kolodziejczyk, Piotr, Polkowski, Wojciech P., Wyrwicz, Lucjan, Alsina, Maria, Pera, Manuel, Kanonnikoff, Tania F., Cervantes, Andrés, Nilsson, Magnus, Monig, Stefan, Wagner, Anna D., Guckenberger, Matthias, Griffiths, Ewen A., Smyth, Elizabeth, Hanna, George B., Markar, Sheraz, Chaudry, M. Asif, Hawkins, Maria A., Cheong, Edward, van Hillegersberg, Richard, van Rossum, Peter S.N.
Publikováno v:
In European Journal of Cancer May 2023 185:28-39
We propose an algorithm to denoise speakers from a single microphone in the presence of non-stationary and dynamic noise. Our approach is inspired by the recent success of neural network models separating speakers from other speakers and singers from
Externí odkaz:
http://arxiv.org/abs/1804.10669
Autor:
Richey, Colleen, Barrios, Maria A., Armstrong, Zeb, Bartels, Chris, Franco, Horacio, Graciarena, Martin, Lawson, Aaron, Nandwana, Mahesh Kumar, Stauffer, Allen, van Hout, Julien, Gamble, Paul, Hetherly, Jeff, Stephenson, Cory, Ni, Karl
This paper introduces the Voices Obscured In Complex Environmental Settings (VOICES) corpus, a freely available dataset under Creative Commons BY 4.0. This dataset will promote speech and signal processing research of speech recorded by far-field mic
Externí odkaz:
http://arxiv.org/abs/1804.05053
Autor:
Freund, Brin E.1 (AUTHOR) freund.brin@mayo.edu, Barrios, Maria L.1 (AUTHOR), Feyissa, Anteneh M.1 (AUTHOR), Sabsevitz, David2,3 (AUTHOR), Grewal, Sanjeet S.3 (AUTHOR), Freeman, William D.1,3,4 (AUTHOR), Middlebrooks, Erik H.5 (AUTHOR), Sanchez-Garavito, Jesus E.3 (AUTHOR), Quinones-Hinojosa, Alfredo3 (AUTHOR), Tatum, William O.1 (AUTHOR)
Publikováno v:
British Journal of Neurosurgery. Oct2024, p1-6. 6p. 2 Illustrations.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Marenco, Jose ⁎, Calatrava, Ana, Casanova, Juan, Claps, Francesco, Mascaros, Juan, Wong, Augusto, Barrios, Maria, Martin, Isabel, Rubio, Jose
Publikováno v:
In European Urology Focus November 2021 7(6):1254-1259
The bronchial segmentation and its anatomical variations. A clinical-anatomic and bronchoscopy study
Autor:
Martín-Ruiz, Silvia, Gutiérrez-Collar, Christian, Forcén Vicente De Vera, Elena, Bernabé-Barrios, María José, de Blas, Clara Simón, Konschake, Marko, Ramón Sañudo, José, Maranillo, Eva
Publikováno v:
In Annals of Anatomy May 2021 235