Zobrazeno 1 - 10
of 410
pro vyhledávání: '"Barrios, B"'
Autor:
Gates, J. M., Orford, R., Rudolph, D., Appleton, C., Barrios, B. M., Benitez, J. Y., Bordeau, M., Botha, W., Campbell, C. M., Chadderton, J., Chemey, A. T., Clark, R. M., Crawford, H. L., Despotopulos, J. D., Dorvaux, O., Esker, N. E., Fallon, P., Folden III, C. M., Gall, B. J. P., Garcia, F. H., Golubev, P., Gooding, J. A., Grebo, M., Gregorich, K. E., Guerrero, M., Henderson, R. A., Herzberg, R. -D., Hrabar, Y., King, T. T., Covo, M. Kireeff, Kirkland, A. S., Krücken, R., Leistenschneider, E., Lykiardopoulou, E. M., McCarthy, M., Mildon, J. A., Müller-Gatermann, C., Phair, L., Pore, J. L., Rice, 1 E., Rykaczewski, K. P., Sammis, B. N., Sarmiento, L. G., Seweryniak, D., Sharp, D. K., Sinjari, A., Steinegger, P., Stoyer, M. A., Szornel, J. M., Thomas, K., Todd, D. S., Vo, P., Watson, V., Wooddy, P. T.
The $^{244}$Pu($^{50}$Ti,$xn$)$^{294-x}$Lv reaction was investigated at Lawrence Berkeley National Laboratory's 88-Inch Cyclotron facility. The experiment was aimed at the production of a superheavy element with $Z\ge 114$ by irradiating an actinide
Externí odkaz:
http://arxiv.org/abs/2407.16079
In this paper we consider the heat semigroup $\{W_t\}_{t>0}$ defined by the combinatorial Laplacian and two subordinated families of $\{W_t\}_{t>0}$ on homogeneous trees $X$. We characterize the weights $u$ on $X$ for which the pointwise convergence
Externí odkaz:
http://arxiv.org/abs/2202.11210
We study the equation \begin{equation*}\label{P0} (-\Delta)^s u = |x|^{\alpha} u^{\frac{N+2s+2\alpha}{N-2s}}\mbox{ in }\mathbb{R}^N,\tag{P} \end{equation*} where $(-\Delta)^s$ is the fractional Laplacian operator with $0 < s < 1$, $\alpha>-2s$ and $N
Externí odkaz:
http://arxiv.org/abs/2009.09481
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Barrios, B., Quaas, A.
We will consider the nonlocal H\'enon equation $$(-\Delta)^s u= |x|^{\alpha} u^{p},\quad \mathbb{R}^{N},$$ where $(-\Delta)^s$ is the fractional Laplacian operator with $01$ and $N>2s$. We prove a nonexistence result for posit
Externí odkaz:
http://arxiv.org/abs/1901.08031
In this paper we study a variational Neumann problem for the higher order $s$-fractional Laplacian, with $s>1$. In the process, we introduce some non-local Neumann boundary conditions that appear in a natural way from a Gauss-like integration formula
Externí odkaz:
http://arxiv.org/abs/1806.05593
In this paper we are concerned with the construction of periodic solutions of the nonlocal problem $(-\Delta)^s u= f(u)$ in $\mathbb{R}$, where $(-\Delta)^s$ stands for the $s$-Laplacian, $s\in (0,1)$. We introduce a suitable framework which allows t
Externí odkaz:
http://arxiv.org/abs/1803.08739
Publikováno v:
Discrete Contin. Dyn. Syst. 37 (2017), no. 11, 5731 - 5746
In this work we obtain a Liouville theorem for positive, bounded solutions of the equation $$ (-\Delta)^s u= h(x_N)f(u) \quad \hbox{in }\mathbb{R}^{N} $$ where $(-\Delta)^s$ stands for the fractional Laplacian with $s\in (0,1)$, and the functions $h$
Externí odkaz:
http://arxiv.org/abs/1705.05632
In this paper we analyze the semi-linear fractional Laplace equation $$(-\Delta)^s u = f(u) \quad\text{ in } \mathbb{R}^N_+,\quad u=0 \quad\text{ in } \mathbb{R}^N\setminus \mathbb{R}^N_+,$$ where $\mathbb{R}^N_+=\{x=(x',x_N)\in \mathbb{R}^N:\ x_N>0\
Externí odkaz:
http://arxiv.org/abs/1704.02597