Zobrazeno 1 - 10
of 197
pro vyhledávání: '"Barral, Julien"'
Autor:
Barral, Julien, Seuret, Stéphane
In this article, starting from a Gibbs capacity, we build a new random capacity by applying two simple operators, the first one introducing some redundancy and the second one performing a random sampling. Depending on the values of the two parameters
Externí odkaz:
http://arxiv.org/abs/2304.11250
Multifractal analysis and Erd\'os-R\'enyi laws of large numbers for branching random walks in $\R^d$
Autor:
Attia, Najmeddine, Barral, Julien
We revisit the multifractal analysis of $\R^d$-valued branching random walks averages by considering subsets of full Hausdorff dimension of the standard level sets, over each infinite branch of which a quantified version of the Erd\"os-R\'enyi law of
Externí odkaz:
http://arxiv.org/abs/2210.01092
Autor:
Barral, Julien, Seuret, Stéphane
In this article, a solution to the so-called Frisch-Parisi conjecture is brought. This achievement is based on three ingredients developed in this paper. First almost-doubling fully supported Radon measures on $\R^d$ with a prescribed singularity spe
Externí odkaz:
http://arxiv.org/abs/2007.00971
Autor:
Barral, Julien, Jin, Xiong
We consider the action of Mandelbrot multiplicative cascades on probability measures supported on a symbolic space. For general probability measures, we obtain almost a sharp criterion of non-degeneracy of the limiting measure; it relies on the lower
Externí odkaz:
http://arxiv.org/abs/2006.12082
Autor:
Barral, Julien, Feng, De-Jun
Let $\mu$ be a self-similar measure generated by an IFS $\Phi=\{\phi_i\}_{i=1}^\ell$ of similarities on $\mathbb R^d$ ($d\ge 1$). When $\Phi$ is dimensional regular (see Definition~1.1), we give an explicit formula for the $L^q$-spectrum $\tau_\mu(q)
Externí odkaz:
http://arxiv.org/abs/2002.02319
Autor:
Barral, Julien, Feng, De-Jun
We compute the Hausdorff dimension of any random statistically self-affine Sierpinski sponge $K\subset \mathbb{R}^k$ ($k\ge 2$) obtained by using some percolation process in $[0,1]^k$. To do so, we first exhibit a Ledrappier-Young type formula for th
Externí odkaz:
http://arxiv.org/abs/2002.00642
Autor:
Barral, Julien, Seuret, Stéphane
Publikováno v:
In Journal de mathématiques pures et appliquées July 2023 175:281-329
Autor:
Barral, Julien, Seuret, Stéphane
Publikováno v:
In Journal de mathématiques pures et appliquées July 2023 175:76-108
Autor:
Barral, Julien, Feng, De-Jun
Let $\mu$ be a planar Mandelbrot measure and $\pi_*\mu$ its orthogonal projection on one of the main axes. We study the thermodynamic and geometric properties of $\pi_*\mu$. We first show that $\pi_*\mu$ is exactly dimensional, with $\dim(\pi_*\mu)=\
Externí odkaz:
http://arxiv.org/abs/1605.09083
Autor:
Barral, Julien, Feng, De-Jun
Publikováno v:
In Journal de mathématiques pures et appliquées May 2021 149:254-303