Zobrazeno 1 - 10
of 11
pro vyhledávání: '"Baris Gecer"'
Autor:
Alexandros Lattas, Stylianos Moschoglou, Stefanos Zafeiriou, Stylianos Ploumpis, Baris Gecer, Abhijeet Ghosh
Publikováno v:
IEEE Transactions on Pattern Analysis and Machine Intelligence. 44:9269-9284
Over the last years, many face analysis tasks have accomplished astounding performance, with applications including face generation and 3D face reconstruction from a single "in-the-wild" image. Nevertheless, to the best of our knowledge, there is no
Publikováno v:
2023 IEEE 17th International Conference on Automatic Face and Gesture Recognition (FG).
Autor:
Nick Pears, Baris Gecer, Eimear O' Sullivan, Haoyang Wang, Evangelos Ververas, Stefanos Zafeiriou, William A. P. Smith, Stylianos Moschoglou, Stylianos Ploumpis
Publikováno v:
IEEE Transactions on Pattern Analysis and Machine Intelligence. 43:4142-4160
Three-dimensional Morphable Models (3DMMs) are powerful statistical tools for representing the 3D shapes and textures of an object class. Here we present the most complete 3DMM of the human head to date that includes face, cranium, ears, eyes, teeth
Autor:
Athanasios Papaioannou, Baris Gecer, Shiyang Cheng, Grigorios Chrysos, Jiankang Deng, Eftychia Fotiadou, Christos Kampouris, Dimitrios Kollias, Stylianos Moschoglou, Kritaphat Songsri-In, Stylianos Ploumpis, George Trigeorgis, Panagiotis Tzirakis, Evangelos Ververas, Yuxiang Zhou, Allan Ponniah, Anastasios Roussos, Stefanos Zafeiriou
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783031200731
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::7262dc4e508460472ee6cad9736435ad
https://doi.org/10.1007/978-3-031-20074-8_27
https://doi.org/10.1007/978-3-031-20074-8_27
Autor:
Alexandros, Lattas, Stylianos, Moschoglou, Stylianos, Ploumpis, Baris, Gecer, Abhijeet, Ghosh, Stefanos, Zafeiriou
Publikováno v:
IEEE transactions on pattern analysis and machine intelligence. 44(12)
Over the last years, with the advent of Generative Adversarial Networks (GANs), many face analysis tasks have accomplished astounding performance, with applications including, but not limited to, face generation and 3D face reconstruction from a sing
Publikováno v:
CVPR
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
The last few years have witnessed the great success of non-linear generative models in synthesizing high-quality photorealistic face images. Many recent 3D facial texture reconstruction and pose manipulation from a single image approaches still rely
A lot of work has been done towards reconstructing the 3D facial structure from single images by capitalizing on the power of Deep Convolutional Neural Networks (DCNNs). In the recent works, the texture features either correspond to components of a l
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::192350966486cfa97e3e0513c00eb358
Autor:
Stefanos Zafeiriou, Alexandros Lattas, Baris Gecer, Stylianos Moschoglou, Abhijeet Ghosh, Vasileios Triantafyllou, Stylianos Ploumpis
Publikováno v:
CVPR
Over the last years, with the advent of Generative Adversarial Networks (GANs), many face analysis tasks have accomplished astounding performance, with applications including, but not limited to, face generation and 3D face reconstruction from a sing
Autor:
Stefanos Zafeiriou, Baris Gecer, Jiankang Deng, Stylianos Moschoglou, Alexander Lattas, Stylianos Ploumpis, Athanasios Papaioannou
Publikováno v:
Computer Vision – ECCV 2020 ISBN: 9783030585259
ECCV (29)
ECCV (29)
Generating realistic 3D faces is of high importance for computer graphics and computer vision applications. Generally, research on 3D face generation revolves around linear statistical models of the facial surface. Nevertheless, these models cannot r
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::9ac283d68e2b5e9761162afd63e58e39
https://doi.org/10.1007/978-3-030-58526-6_25
https://doi.org/10.1007/978-3-030-58526-6_25
Publikováno v:
Computer Vision – ECCV 2018 ISBN: 9783030012519
ECCV (11)
ECCV (11)
We propose a novel end-to-end semi-supervised adversarial framework to generate photorealistic face images of new identities with a wide range of expressions, poses, and illuminations conditioned by synthetic images sampled from a 3D morphable model.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::2d9b7fab6f34886c9af739736a32aea7
https://doi.org/10.1007/978-3-030-01252-6_14
https://doi.org/10.1007/978-3-030-01252-6_14