Zobrazeno 1 - 10
of 28
pro vyhledávání: '"Baris Coskunuzer"'
Autor:
Baris Coskunuzer
Publikováno v:
Journal of Topology and Analysis. 15:251-264
In this paper, we study the asymptotic Plateau problem in [Formula: see text]. We construct the first examples of non-fillable finite curves with no thin tail in [Formula: see text].
Autor:
Henry Adams, Baris Coskunuzer
We introduce several geometric notions, including the width of a homology class, to the theory of persistent homology. These ideas provide geometric interpretations of persistence diagrams. Indeed, we give quantitative and geometric descriptions of t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6e15def88d1cdac155eb8dd390ca60f6
http://arxiv.org/abs/2103.06408
http://arxiv.org/abs/2103.06408
Autor:
Baris Coskunuzer
We give a generalization of Meeks-Yau's celebrated embeddedness result for the solutions of the Plateau problem for extreme curves.
15 pages, 6 figures
15 pages, 6 figures
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b0fff6d5a16ddbcf41e7356fc07ccbf9
http://arxiv.org/abs/2103.01023
http://arxiv.org/abs/2103.01023
Autor:
Baris Coskunuzer
Publikováno v:
Algebraic & Geometric Topology
We show that any open orientable surface S can be properly embedded in H^2xR as an area minimizing surface.
Comment: 26 pages, 6 figures. With the editors' request, the paper splitted into two parts. The other part posted as APP for Tall Curves
Comment: 26 pages, 6 figures. With the editors' request, the paper splitted into two parts. The other part posted as APP for Tall Curves
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::155c6ef287a1accb58f4f36ac47d3fae
https://hdl.handle.net/21.11116/0000-000B-1C2A-821.11116/0000-000A-79A1-8
https://hdl.handle.net/21.11116/0000-000B-1C2A-821.11116/0000-000A-79A1-8
Autor:
Baris Coskunuzer
Publikováno v:
Selecta Mathematica. 24:4811-4838
We give a fairly complete solution to the asymptotic Plateau Problem for area minimizing surfaces in $${\mathbb H}^2\times {\mathbb R}$$ . In particular, we identify the collection of Jordan curves in $$\partial _\infty ({\mathbb H}^2\times {\mathbb
Autor:
Baris Coskunuzer
Publikováno v:
Transactions of the American Mathematical Society. 371:1253-1269
We show that for any C^0 Jordan curve C in the sphere at infinity of H^3, there exists an embedded $H$-plane P_H in H^3 with asymptotic boundary C for any H in (-1,1). As a corollary, we proved that any quasi-Fuchsian hyperbolic 3-manifold M=SxR cont
Publikováno v:
Mathematische Annalen. 370:1491-1512
For any $$H \in (0,\frac{1}{2})$$ , we construct complete, non-proper, stable, simply-connected surfaces embedded in $${\mathbb H}^2\times {\mathbb R}$$ with constant mean curvature H.
Autor:
Baris Coskunuzer
Publikováno v:
Geometry and Topology
We show that for any Jordan curve Gamma in S-infinity(2) (H-3) with at least one smooth point, there exists an embedded H-plane P-H in H-3 with partial derivative P-infinity(H) = Gamma for any H is an element of [0, 1).
Fulbright Grant; Scientif
Fulbright Grant; Scientif
Autor:
Baris Coskunuzer
In this paper, we show the existence of smoothly embedded closed minimal surfaces in infinite volume hyperbolic $3$-manifolds except some special cases.
Tube Lemma removed, and proof simplified. New figures added
Tube Lemma removed, and proof simplified. New figures added
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f209ae7c622b94dd5b84ee275ca1d735
http://arxiv.org/abs/1806.10549
http://arxiv.org/abs/1806.10549
Publikováno v:
J. Differential Geom. 105, no. 3 (2017), 405-425
For any $H \in [0, 1)$, we construct complete, non-proper, stable, simply-connected surfaces with constant mean curvature $H$ embedded in hyperbolic three-space.