Zobrazeno 1 - 10
of 210
pro vyhledávání: '"Baricz, Árpad"'
In this paper we focus on continuous univariate probability distributions, like McKay distributions, $K$-distribution, generalized inverse Gaussian distribution and generalised McKay distributions, with support $[0,\infty),$ which are related to modi
Externí odkaz:
http://arxiv.org/abs/2406.17721
Autor:
Baricz, Árpád, Nemes, Gergő
Publikováno v:
Journal of Mathematical Analysis and Applications, Volume 494, Issue 2, Article 124624 (2021)
The asymptotic behaviour, with respect to the large order, of the radii of starlikeness of two types of normalised Bessel functions is considered. We derive complete asymptotic expansions for the radii of starlikeness and provide recurrence relations
Externí odkaz:
http://arxiv.org/abs/2004.06308
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Applicable Analysis and Discrete Mathematics, 2022 Apr 01. 16(1), 202-217.
Externí odkaz:
https://www.jstor.org/stable/27174753
Autor:
Baricz, Árpád, Prajapati, Anuja
Publikováno v:
Mathematical Communications 25(1) (2020) 117-135
In this paper our aim is to find the radii of starlikeness and convexity of the generalized Mittag-Leffler function for three different kinds of normalization by using their Hadamard factorization in such a way that the resulting functions are analyt
Externí odkaz:
http://arxiv.org/abs/1901.04333
Publikováno v:
Ramanujan Journal 51(2) (2020) 275-295
Some geometric properties of a normalized hyper-Bessel functions are investigated. Especially we focus on the radii of starlikeness, convexity, and uniform convexity of hyper-Bessel functions and we show that the obtained radii satisfy some transcend
Externí odkaz:
http://arxiv.org/abs/1802.05226
Autor:
Baricz, Árpád, Štampach, František
Publikováno v:
Linear Algebra and its Applications 548(1) (2018) 259-272
We derive a closed formula for the determinant of the Hankel matrix whose entries are given by sums of negative powers of the zeros of the regular Coulomb wave function. This new identity applied together with results of Grommer and Chebotarev allows
Externí odkaz:
http://arxiv.org/abs/1708.07729
Publikováno v:
Mathematical Communications 23(1) (2018) 97-117
In this paper our aim is to find the radii of starlikeness and convexity of the normalized Wright functions for three different kind of normalization. The key tools in the proof of our main results are the Mittag-Leffler expansion for Wright function
Externí odkaz:
http://arxiv.org/abs/1702.00631
Autor:
Baricz, Árpád, Singh, Sanjeev
Publikováno v:
Proceedings of the American Mathematical Society 146(5) (2018) 2207-2216
The real and complex zeros of some special entire functions such as Wright, hyper-Bessel, and a special case of generalized hypergeometric functions are studied by using some classical results of Laguerre, Obreschkhoff, P\'olya and Runckel. The obtai
Externí odkaz:
http://arxiv.org/abs/1702.00626
Autor:
Baricz, Árpád, Mehrez, Khaled
In this paper our aim is to show some new inequalities of Redheffer type for Bessel and modified Bessel functions of the first kind. The key tools in our proofs are some classical results on the monotonicity of quotients of differentiable functions a
Externí odkaz:
http://arxiv.org/abs/1701.08446