Zobrazeno 1 - 10
of 70
pro vyhledávání: '"Bardakov, V. G."'
Autor:
Bardakov, V. G., Iskra, A. L.
The class transposition group $CT(\mathbb{Z})$ was introduced by S. Kohl in 2010. It is a countable subgroup of the permutation group $Sym(\mathbb{Z})$ of the set of integers $\mathbb{Z}$. We study products of two class transpositions $CT(\mathbb{Z})
Externí odkaz:
http://arxiv.org/abs/2409.13341
We find connection between relative Rota--Baxter operators and usual Rota--Baxter operators. We prove that any relative Rota--Baxter operator on a group $H$ with respect to $(G, \Psi)$ defines a Rota--Baxter operator on the semi-direct product $H\rti
Externí odkaz:
http://arxiv.org/abs/2404.12632
Autor:
Bardakov, V. G., Bovdi, V. A.
In the present article we define and investigate relative Rota--Baxter operators and relative averaging operators on racks and rack algebras. Also, if B is a Rota--Baxter or averaging operator on a rack X, then we can extend B by linearity to the rac
Externí odkaz:
http://arxiv.org/abs/2402.11660
We study the following question: under what conditions extension of one residually nilpotent group by another residually nilpotent group is residually nilpotent? We prove some sufficient conditions under which this extension is residually nilpotent.
Externí odkaz:
http://arxiv.org/abs/2106.11678
Autor:
Bardakov, V. G., Neshchadim, M. V.
We find the lower central series for residually nilpotent Baumslag-Solitar groups, and find the intersection of all terms of the lower central series. Also, we find non-abelian Bauslag-Solitar groups for which the lower central series has length 2. F
Externí odkaz:
http://arxiv.org/abs/2009.01150
Homotopy braid group is the subject of the paper. First, linearity of homotopy braid group over the integers is proved. Then we prove that the group homotopy braid group on three strands is torsion free.
Comment: 10 pages
Comment: 10 pages
Externí odkaz:
http://arxiv.org/abs/2008.07806
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
In the paper of Yu. A. Mikhalchishina for an arbitrary virtual link $L$ three groups $G_{1,r}(L)$, $r>0$, $G_{2}(L)$ and $G_{3}(L)$ were defined. In the present paper these groups for the virtual trefoil are investigated. The structure of these group
Externí odkaz:
http://arxiv.org/abs/1804.06240
Autor:
Bardakov, V. G., Neshchadim, M. V.
For a pair of groups $G, H$ we study pairs of actions $G$ on $H$ and $H$ on $G$ such that these pairs are compatible and non-abelian tensor products $G \otimes H$ are defined.
Comment: 9 pages
Comment: 9 pages
Externí odkaz:
http://arxiv.org/abs/1709.07708
In the present paper the representation of the virtual braid group $VB_n$ into the automorphism group of free product of the free group and free abelian group is constructed. This representation generalizes the previously constructed ones. The fact t
Externí odkaz:
http://arxiv.org/abs/1603.01425