Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Baranwal, Akanksha"'
We investigate the effects of thermal boundary conditions and Mach number on turbulence close to walls. In particular, we study the near-wall asymptotic behavior for adiabatic and pseudo-adiabatic walls, and compare to the asymptotic behavior recentl
Externí odkaz:
http://arxiv.org/abs/2307.03265
Autor:
Mao, Haiyu, Alser, Mohammed, Sadrosadati, Mohammad, Firtina, Can, Baranwal, Akanksha, Cali, Damla Senol, Manglik, Aditya, Alserr, Nour Almadhoun, Mutlu, Onur
Nanopore sequencing is a widely-used high-throughput genome sequencing technology that can sequence long fragments of a genome into raw electrical signals at low cost. Nanopore sequencing requires two computationally-costly processing steps for accur
Externí odkaz:
http://arxiv.org/abs/2209.08600
Convolutional Neural Networks (CNNs) are rapidly gaining popularity in varied fields. Due to their increasingly deep and computationally heavy structures, it is difficult to deploy them on energy constrained mobile applications. Hardware accelerators
Externí odkaz:
http://arxiv.org/abs/1901.02774
Efficient and real time segmentation of color images has a variety of importance in many fields of computer vision such as image compression, medical imaging, mapping and autonomous navigation. Being one of the most computationally expensive operatio
Externí odkaz:
http://arxiv.org/abs/1710.02260
Autor:
Baranwal, Akanksha
Convolution layers are useful for improving the accuracy of neural networks. In the case of networks like CosmoFlow with multiple consecutive convolution layers, the runtime for convolution layers dominates the end-to-end runtime. Several convolution
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::52209fb526983fa48e919501bff9a593
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Journal of Fluid Mechanics; 2/25/2022, Vol. 933, pA28-1-A28-13, 13p
Convolutional Neural Networks (CNNs) are rapidly gaining popularity in varied fields. Due to their increasingly deep and computationally heavy structures, it is difficult to deploy them on energy constrained mobile applications. Hardware accelerators
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c06ebb875d46a131612eeba27b5f5d58