Zobrazeno 1 - 10
of 191
pro vyhledávání: '"Baptista, J. M."'
Autor:
Baptista, J. M.
Publikováno v:
Lett. Math. Phys. 104: 731-747, 2014
We note that the Bogomolny equation for abelian vortices is precisely the condition for invariance of the Hermitian-Einstein equation under a degenerate conformal transformation. This leads to a natural interpretation of vortices as degenerate hermit
Externí odkaz:
http://arxiv.org/abs/1212.3561
Autor:
Baptista, J. M.
We consider the self-dual vortex equations on a positive line bundle L --> M over a compact Kaehler manifold of arbitrary dimension. When M is simply connected, the moduli space of vortex solutions is a projective space. When M is an abelian variety,
Externí odkaz:
http://arxiv.org/abs/1211.0012
Autor:
Baptista, J. M., Biswas, Indranil
Publikováno v:
Diff. Geom. Appl. 31: 725-745, 2013
Let L --> X be a complex line bundle over a compact connected Riemann surface. We consider the abelian vortex equations on L when the metric on the surface has finitely many point degeneracies or conical singularities and the line bundle has paraboli
Externí odkaz:
http://arxiv.org/abs/1207.0863
Autor:
Baptista, J. M.
Publikováno v:
Nucl.Phys.B844:308-333,2011
We derive general expressions for the Kaehler form of the L^2-metric in terms of standard 2-forms on vortex moduli spaces. In the case of abelian vortices in gauged linear sigma-models, this allows us to compute explicitly the Kaehler class of the L^
Externí odkaz:
http://arxiv.org/abs/1003.1296
Autor:
Baptista, J. M.
Publikováno v:
Lett.Math.Phys.92:243-252,2010
In this note we show that for the group G = U(N) the space of Hecke modifications of a rank N vector bundle over a Riemann surface C coincides with the moduli space of solutions of certain non-abelian vortex equations over C . Through the recent work
Externí odkaz:
http://arxiv.org/abs/0907.1752
Autor:
Baptista, J. M.
Publikováno v:
Commun.Math.Phys.291:799-812,2009
We consider the vortex equations for a U(n) gauge field coupled to a Higgs field with values on the n times n square matrices. It is known that when these equations are defined on a compact Riemann surface, their moduli space of solutions is closely
Externí odkaz:
http://arxiv.org/abs/0810.3220
Autor:
Baptista, J. M.
Publikováno v:
JHEP 0904:017,2009
Using mirror symmetry as described by Hori and Vafa, we compute the quantum equivariant cohomology ring of toric manifolds. This ring arises naturally in topological gauged sigma-models and is related to the Hamiltonian Gromov-Witten invariants of th
Externí odkaz:
http://arxiv.org/abs/0806.2091
Autor:
Baptista, J. M.
Publikováno v:
JHEP 0802:096,2008
We consider gauged sigma-models from a Riemann surface into a Kaehler and hamiltonian G-manifold X. The supersymmetric N=2 theory can always be twisted to produce a gauged A-model. This model localizes to the moduli space of solutions of the vortex e
Externí odkaz:
http://arxiv.org/abs/0707.2786
Autor:
Baptista, J. M.
Publikováno v:
Adv.Theor.Math.Phys.9:1007-1047,2005
We describe a topological field theory that studies the moduli space of solutions of the symplectic vortex equations. It contains as special cases the topological sigma-model and topological Yang-Mills over Kahler surfaces. The correlation functions
Externí odkaz:
http://arxiv.org/abs/hep-th/0502152
Autor:
Baptista, J. M.
Publikováno v:
Commun.Math.Phys. 261 (2006) 161-194
We consider nonlinear gauged sigma-models with Kahler domain and target. For a special choice of potential these models admit Bogomolny (or self-duality) equations -- the so-called vortex equations. We find the moduli space and energy spectrum of the
Externí odkaz:
http://arxiv.org/abs/math/0411517