Zobrazeno 1 - 10
of 90
pro vyhledávání: '"Baouendi, M."'
In this paper, we study holomorphic mappings sending a hyperquadric of signature $\ell$ in $\bC^n$ into a hyperquadric of signature $\ell'$ in $\bC^N$. We show (Theorem \ref{main}) that if the signature difference $\ell'-\ell$ is not too large, then
Externí odkaz:
http://arxiv.org/abs/0906.1235
We consider a Cauchy problem for an overdetermined system of PDEs, and give necessary and sufficient conditions for solvability of this Cauchy problem for all data. As an application, we find all real tube hypersurfaces in complex space whose Levi nu
Externí odkaz:
http://arxiv.org/abs/0811.1255
Let $Q^N_l\subset \bC\bP^{N+1}$ denote the standard real, nondegenerate hyperquadric of signature $l$ and $M\subset \bC^{n+1}$ a real, Levi nondegenerate hypersurface of the same signature $l$. We shall assume that there is a holomorphic mapping $H_0
Externí odkaz:
http://arxiv.org/abs/0711.4647
In this paper, we consider holomorphic mappings between real hypersurfaces in different dimensional complex spaces. We give a number of conditions that imply that such mappings are transversal to the target hypersurface at most points.
Comment:
Comment:
Externí odkaz:
http://arxiv.org/abs/math/0701432
It is shown that a germ of a holomorphic mapping sending a real-analytic generic submanifold of finite type into another is determined by its projection on the Segre variety of the target manifold. A necessary and sufficient condition is given for a
Externí odkaz:
http://arxiv.org/abs/math/0609677
This paper shows that an arbitrary generic submanifold in a complex manifold can be deformed into a 1-parameter family of generic submanifolds satisfying strong nondegeneracy conditions. The proofs use a careful analysis of the jet spaces of embeddin
Externí odkaz:
http://arxiv.org/abs/math/0608296
In this paper, we study formal mappings between smooth generic submanifolds in multidimensional complex space and establish results on finite determination, convergence and local biholomorphic and algebraic equivalence. Our finite determination resul
Externí odkaz:
http://arxiv.org/abs/math/0012243
Iterated Segre mappings of real analytic generic submanifolds in complex space have been an essential tool in the study of holomorphic, formal, and CR mappings between such manifolds. In this paper we present a theory of iterated Segre mappings for s
Externí odkaz:
http://arxiv.org/abs/math/0008112
We show that for any real-analytic submanifold M in C^N there is a proper real-analytic subvariety V contained in M such that for any point p in M\V, any real-analytic submanifold M' in C^N, and any point p' in M', the germs of the submanifolds M and
Externí odkaz:
http://arxiv.org/abs/math/0002186