Zobrazeno 1 - 10
of 24
pro vyhledávání: '"Banos, Bertrand"'
We show how a symmetry reduction of the equations for incompressible hydrodynamics in three dimensions leads naturally to a Monge-Amp\`ere structure, and Burgers'-type vortices are a canonical class of solutions associated with this structure. The ma
Externí odkaz:
http://arxiv.org/abs/1510.02327
Autor:
Banos, Bertrand
We describe a method to reduce partial differential equations of Monge-Amp\`ere type in 4 variables to complex partial differential equations in 2 variables. To illustrate this method, we construct explicit holomorphic solutions of the special lagran
Externí odkaz:
http://arxiv.org/abs/1104.0362
Autor:
Banos, Bertrand
In this lecture delivered at the Integrable and Quantum Field Theory at Peyresq sixth meeting, we review the Lychagin's Monge-Ampere operators theory and exhibit the link it establishes between the classical problem of local equivalence for non linea
Externí odkaz:
http://arxiv.org/abs/math/0612514
Autor:
Banos, Bertrand
Publikováno v:
Journal of Geometry and Physics 57 (2007) 841-853
We associate an integrable generalized complex structure to each 2-dimensional symplectic Monge-Amp\`ere equation of divergent type and, using the Gualtieri $\bar{\partial}$ operator, we characterize the conservation laws and the generating function
Externí odkaz:
http://arxiv.org/abs/math/0603432
We study the Navier-Stokes and Euler equations of incompressible hydrodynamics in two and three spatial dimensions and show how the constraint of incompressiblility leads to equations of Monge--Amp\`ere type for the stream function, when the Laplacia
Externí odkaz:
http://arxiv.org/abs/nlin/0509023
Autor:
Banos, Bertrand, Swann, Andrew
Publikováno v:
Class.Quant.Grav. 21 (2004) 3127-3136
We prove that locally any hyper-K\"ahler metric with torsion admits an HKT potential.
Comment: 9 pages
Comment: 9 pages
Externí odkaz:
http://arxiv.org/abs/math/0402366
Autor:
Banos, Bertrand
Publikováno v:
Letters in Mathematical Physics 62: 1-15 2002
We define a nondegenerate Monge-Amp\`ere structure on a 6-dimensional manifold as a pair $(\Omega,\omega)$, such that $\Omega$ is a symplectic form and $\omega$ is a 3-differential form which satisfies $\omega\wedge\Omega=0$ and which is nondegenerat
Externí odkaz:
http://arxiv.org/abs/math/0211185
Autor:
Banos, Bertrand
We define a non-degenerated Monge-Ampere structure on a 6-manifold associated with a Monge-Ampere equation as a couple (\Omega,\omega), such that \Omega is a symplectic form and \omega is a 3-differential form which satisfies \omega\wedge\Omega=0 and
Externí odkaz:
http://arxiv.org/abs/math/0205240
Autor:
Banos, Bertrand
Publikováno v:
In Differential Geometry and its Applications 2003 19(2):147-166
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.