Zobrazeno 1 - 10
of 17
pro vyhledávání: '"Banluesombatkul, Nannapas"'
Autor:
Lakhan, Payongkit, Banluesombatkul, Nannapas, Sricom, Natchaya, Surapat, Korn, Rotruchiphong, Ratha, Sawangjai, Phattarapong, Yagi, Tohru, Limpiti, Tulaya, Wilaiprasitporn, Theerawit
Brain biometrics based on electroencephalography (EEG) have been used increasingly for personal identification. Traditional machine learning techniques as well as modern day deep learning methods have been applied with promising results. In this pape
Externí odkaz:
http://arxiv.org/abs/2208.08901
Autor:
Banluesombatkul, Nannapas, Ouppaphan, Pichayoot, Leelaarporn, Pitshaporn, Lakhan, Payongkit, Chaitusaney, Busarakum, Jaimchariyatam, Nattapong, Chuangsuwanich, Ekapol, Chen, Wei, Phan, Huy, Dilokthanakul, Nat, Wilaiprasitporn, Theerawit
Publikováno v:
IEEE Journal of Biomedical and Health Informatics (2020)
Identifying bio-signals based-sleep stages requires time-consuming and tedious labor of skilled clinicians. Deep learning approaches have been introduced in order to challenge the automatic sleep stage classification conundrum. However, the difficult
Externí odkaz:
http://arxiv.org/abs/2004.04157
Autor:
Lakhan, Payongkit, Banluesombatkul, Nannapas, Changniam, Vongsagon, Dhithijaiyratn, Ratwade, Leelaarporn, Pitshaporn, Boonchieng, Ekkarat, Hompoonsup, Supanida, Wilaiprasitporn, Theerawit
Publikováno v:
IEEE Sensor Journal, 2019
For several decades, electroencephalography (EEG) has featured as one of the most commonly used tools in emotional state recognition via monitoring of distinctive brain activities. An array of datasets have been generated with the use of diverse emot
Externí odkaz:
http://arxiv.org/abs/1810.04582
Publikováno v:
TENCON 2018 - 2018 IEEE Region 10 Conference
Dramatic raising of Deep Learning (DL) approach and its capability in biomedical applications lead us to explore the advantages of using DL for sleep Apnea-Hypopnea severity classification. To reduce the complexity of clinical diagnosis using Polysom
Externí odkaz:
http://arxiv.org/abs/1808.10845
Publikováno v:
TENCON 2018 - 2018 IEEE Region 10 Conference
Obstructive sleep apnea (OSA) is a common sleep disorder caused by abnormal breathing. The severity of OSA can lead to many symptoms such as sudden cardiac death (SCD). Polysomnography (PSG) is a gold standard for OSA diagnosis. It records many signa
Externí odkaz:
http://arxiv.org/abs/1808.10844
Autor:
Ditthapron, Apiwat, Banluesombatkul, Nannapas, Ketrat, Sombat, Chuangsuwanich, Ekapol, Wilaiprasitporn, Theerawit
Publikováno v:
IEEE Access 2019
The process of recording Electroencephalography (EEG) signals is onerous and requires massive storage to store signals at an applicable frequency rate. In this work, we propose the EventRelated Potential Encoder Network (ERPENet); a multi-task autoen
Externí odkaz:
http://arxiv.org/abs/1808.06541
Autor:
Wilaiprasitporn, Theerawit, Ditthapron, Apiwat, Matchaparn, Karis, Tongbuasirilai, Tanaboon, Banluesombatkul, Nannapas, Chuangsuwanich, Ekapol
Publikováno v:
IEEE Transactions on Cognitive and Developmental System (2019)
Electroencephalography (EEG) is another mode for performing Person Identification (PI). Due to the nature of the EEG signals, EEG-based PI is typically done while the person is performing some kind of mental task, such as motor control. However, few
Externí odkaz:
http://arxiv.org/abs/1807.03147
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.