Zobrazeno 1 - 10
of 40
pro vyhledávání: '"Bandiera, Ruggero"'
We determine a DG-Lie algebra controlling deformations of a locally free module over a Lie algebroid $\mathcal{A}$. Moreover, for every flat inclusion of Lie algebroids $\mathcal{A}\subset \mathcal{L}$ we introduce semiregularity maps and prove that
Externí odkaz:
http://arxiv.org/abs/2208.00694
We introduce the notion of Chern-Simons classes for curved DG-pairs and we prove that a particular case of this general construction provides canonical $L_\infty$ liftings of Buchweitz-Flenner semiregularity maps for coherent sheaves on complex manif
Externí odkaz:
http://arxiv.org/abs/2111.12985
Autor:
Bandiera, Ruggero
We explore the relationship between the classical constructions of cumulants and Koszul brackets, showing that the former are an expontial version of the latter. Moreover, under some additional technical assumptions, we prove that both constructions
Externí odkaz:
http://arxiv.org/abs/2012.14812
Autor:
Bandiera, Ruggero, Mafra, Carlos R.
In these notes we present a closed-formula solution to the problem of decomposing traces of Lie algebra generators into symmetrized traces and structure constants. The solution is written in terms of Solomon idempotents and exploits a projection deri
Externí odkaz:
http://arxiv.org/abs/2009.02534
Publikováno v:
In Advances in Mathematics 15 December 2023 435 Part A
Publikováno v:
Compositio Math. 157 (2021) 215-235
Let F be a polystable sheaf on a smooth minimal projective surface of Kodaira dimension 0. Then the DG-Lie algebra RHom(F,F) of derived endomorphisms of F is formal. The proof is based on the study of equivariant $L_{\infty}$ minimal models of DG-Lie
Externí odkaz:
http://arxiv.org/abs/1907.10690
We study relations between the quadraticity of the Kuranishi family of a coherent sheaf on a complex projective scheme and the formality of the DG-Lie algebra of its derived endomorphisms. In particular, we prove that for a polystable coherent sheaf
Externí odkaz:
http://arxiv.org/abs/1902.06486
Publikováno v:
J. Noncommut. Geom. 15.2 (2021), pp. 643-711
We prove that the spaces $\operatorname{tot}\big(\Gamma(\Lambda^\bullet A^\vee \otimes_R\mathcal{T}_{\operatorname{poly}}^{\bullet}\big)$ and $\operatorname{tot}\big(\Gamma(\Lambda^\bullet A^\vee)\otimes_R\mathcal{D}_{\operatorname{poly}}^{\bullet}\b
Externí odkaz:
http://arxiv.org/abs/1901.04602
Publikováno v:
Comm. Math. Phys. 375.3 (2020), pp. 1717-1760
We study the shifted analogue of the "Lie--Poisson" construction for $L_\infty$ algebroids and we prove that any $L_\infty$ algebroid naturally gives rise to shifted derived Poisson manifolds. We also investigate derived Poisson structures from a pur
Externí odkaz:
http://arxiv.org/abs/1712.00665
Autor:
Bandiera, Ruggero
We prove that Getzler's higher generalization of the Deligne groupoid commutes with totalization and homotopy limits.
Comment: v3: minor corrections. Comments are welcome!
Comment: v3: minor corrections. Comments are welcome!
Externí odkaz:
http://arxiv.org/abs/1705.02880