Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Bandi, Prasuna"'
Autor:
Bandi, Prasuna, de Saxcé, Nicolas
Given a non-increasing function $\psi\colon\mathbb{N}\to\mathbb{R}^+$ such that $s^{\frac{n+1}{n}}\psi(s)$ tends to zero as $s$ goes to infinity, we show that the set of points in $\mathbb{R}^n$ that are exactly $\psi$-approximable is non-empty, and
Externí odkaz:
http://arxiv.org/abs/2312.10255
We prove that for any proper metric space $X$ and a function $\psi:(0,\infty)\to(0,\infty)$ from a suitable class of approximation functions, the Hausdorff dimensions of the set $W_\psi(Q)$ of all points $\psi$-well-approximable by a well-distributed
Externí odkaz:
http://arxiv.org/abs/2208.14204
Autor:
Bandi, Prasuna, Ghosh, Anish
We consider a system of homogeneous quadratic forms with congruence conditions in $n\geq 3$ variables and prove the existence of two linearly independent integral solutions of bounded height. We also show the existence of small height integral zeros
Externí odkaz:
http://arxiv.org/abs/2008.08568
We prove a uniform effective density theorem as well as an effective counting result for a generic system comprising a polynomial with a mild homogeneous condition and several linear forms using Roger's second moment formula for the Siegel transform
Externí odkaz:
http://arxiv.org/abs/2003.06114
Autor:
Bandi, Prasuna, Ghosh, Anish
We prove an analogue of the Oppenheim conjecture for a system comprising an inhomogeneous quadratic form and a linear form in $3$ variables using dynamics on the space of affine lattices.
Externí odkaz:
http://arxiv.org/abs/1905.12234
Publikováno v:
In Advances in Mathematics 1 February 2023 414
Publikováno v:
In Journal of Number Theory January 2021 218:311-333
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.