Zobrazeno 1 - 10
of 33
pro vyhledávání: '"Bande, Gianluca"'
The aim of this paper is to study Sasakian immersions of (non-compact) complete regular Sasakian manifolds into the Heisenberg group and into $ \mathbb{B}^N\times \mathbb{R}$ equipped with their standard Sasakian structures. We obtain a complete clas
Externí odkaz:
http://arxiv.org/abs/1911.05511
Autor:
Bande, Gianluca, Ghiggini, Paolo
We classify four-dimensional manifolds endowed with symplectic pairs admitting embedded symplectic spheres with non-negative self-intersection, following the strategy of McDuff's classification of rational and ruled symplectic four manifolds.
Co
Co
Externí odkaz:
http://arxiv.org/abs/1802.00790
Autor:
Bande, Gianluca1 (AUTHOR) gbande@unica.it
Publikováno v:
Mathematics (2227-7390). Jul2023, Vol. 11 Issue 13, p2993. 5p.
We prove that the normal metric contact pairs with orthogonal characteristic foliations, which are either Bochner flat or locally conformally flat, are locally isometric to the Hopf manifolds. As a corollary we obtain the classification of locally co
Externí odkaz:
http://arxiv.org/abs/1501.06602
Autor:
Bande, Gianluca, Hadjar, Amine
We study invariant submanifolds of manifolds endowed with a normal or complex metric contact pair with decomposable endomorphism field $\phi$. For the normal case, we prove that a $\phi$-invariant submanifold tangent to a Reeb vector field and orthog
Externí odkaz:
http://arxiv.org/abs/1404.5447
Autor:
Bande, Gianluca, Hadjar, Amine
Publikováno v:
Contemp. Math., 542, 2011, 255-259
A contact pair on a manifold always admits an associated metric for which the two characteristic contact foliations are orthogonal. We show that all these metrics have the same volume element. We also prove that the leaves of the characteristic folia
Externí odkaz:
http://arxiv.org/abs/1003.0281
Autor:
Bande, Gianluca, Hadjar, Amine
Publikováno v:
Tohoku Math. J. 57 (2005), no. 2, 247--260
We introduce a new geometric structure on differentiable manifolds. A \textit{Contact} \textit{Pair}on a manifold $M$ is a pair $(\alpha,\eta) $ of Pfaffian forms of constant classes $2k+1$ and $2h+1$ respectively such that $\alpha\wedge d\alpha^{k}\
Externí odkaz:
http://arxiv.org/abs/math/0305381
Autor:
Bande, Gianluca
Publikováno v:
Transactions of the American Mathematical Society, 2003 Apr 01. 355(4), 1699-1711.
Externí odkaz:
https://www.jstor.org/stable/1194912
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.